题目列表(包括答案和解析)
(本小题
满分14分)
已知函数
的图象在
上连续不断,定义:![]()
,![]()
.
其中,
表示函数
在
上的最小值,
表示函数
在![]()
上的最大值.若存在最小正整数
,使得
对任意的
成立,则称函数
为
上的“
阶
收缩函数”.
(Ⅰ)若
,
,试写出
,
的表达式;
(Ⅱ)已知函数
,
,试判断
是否为
上的“
阶收缩函数”,如果是,求出对应的
;如果不是,请说明理由;
(Ⅲ)已知
,函数
是
上的2阶收缩函数,求
的取值范围.
(本小题满分14分)
已知函数
.
(1)求函数
的最小值;
(2)证明:对任意
恒成立;
(3)对于函数
图象上的不同两点
,如果在函数
图象上存在点
(其中
)使得点
处的切线
,则称直线
存在“伴侣切线”.特别地,当
时,又称直线
存在“中值伴侣切线”.试问:当
时,对于函数
图象上不同两点
、
,直线
是否存在“中值伴侣切线”?证明你的结论.
(本小题满分14分)
已知函数
的图象在
上连续不断,定义:
![]()
,
![]()
.
其中,
表示函数
在
上的最小值,
表示函数
在
上的最大值.若存在最小正整数
,使得
对任意的
成立,则称函数
为
上的“
阶收缩函数”.
(Ⅰ)若
,
,试写出
,
的表达式;
(Ⅱ)已知函数
,
,试判断
是否为
上的“
阶收缩函数”,如果是,求出对应的
;如果不是,请说明理由;
(Ⅲ)已知
,函数
是
上的2阶收缩函数,求
的取值范围.
(本小题满分14分)
在平面直角坐标系
中,已知椭圆
.如图所示,斜率为
且不过原点的直线
交椭圆
于
,
两点,线段
的中点为
,射线
交椭圆
于点
,交直线
于点
.
(Ⅰ)求
的最小值;
(Ⅱ)若
∙
,
(i)求证:直线
过定点;
(ii)试问点
,
能否关于
轴对称?若能,求出此时
的外接圆方程;若不能,
请说明理由.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com