函数( ) A. B.[12.17] C.[12.25] D.[12.] 查看更多

 

题目列表(包括答案和解析)

函数(  )

A、(12,17)           B、[12,17]       C、[12,25]       D、[12,]

查看答案和解析>>

函数(  )

A、(12,17)           B、[12,17]       C、[12,25]       D、[12,]

查看答案和解析>>

函数f(x)=ax2+4x+1在区间[1,4]上的最小值为g(a),则(  )
A、g(a)=
a+5,(a>0或-
1
2
≤a<0)
5,(a=0)
1-
4
a
,(-2≤a<-
1
2
)
16a+17,(a≤-2)
B、g(a)=
a+5,(a>0或-
1
2
≤a<0)
1-
4
a
,(-2≤a<-
1
2
)
16a+17,(a≤-2)
C、g(a)=
a+5,(a≥0或a≤-2)
1-
4
a
,(-2≤a<-
1
2
)
16a+17,(-
1
2
≤a<0)
D、g(a)=
a+5,(a≥-
4
5
)
16a+17,(a<-
4
5
)

查看答案和解析>>

(2006•静安区二模)某种洗衣机在洗涤衣服时,需经过进水、清洗、排水、脱水四个连续的过程.假设进水时水量匀速增加,清洗时水量保持不变.已知进水时间为4分钟,清洗时间为12分钟,排水时间为2分钟,脱水时间为2分钟.洗衣机中的水量y(升)与时间x(分钟)之间的关系如下表所示:
x 0 2 4 16 16.5 17 18
y 0 20 40 40 29.5 20 2
请根据表中提供的信息解答下列问题:
(1)试写出当x∈[0,16]时y关于x的函数解析式,并画出该函数的图象;
(2)根据排水阶段的2分钟点(x,y)的分布情况,可选用y=
a
x
+b
或y=c(x-20)2+d(其中a、b、c、d为常数),作为在排水阶段的2分钟内水量y与时间x之间关系的模拟函数.试分别求出这两个函数的解析式;
(3)请问(2)中求出的两个函数哪一个更接近实际情况?(写出必要的步骤)

查看答案和解析>>


同步练习册答案