证明:(1)∵平面. ∴. ∵且. ∴平面. 又∵. ∴不论为何值.恒有. ∴平面.平面. ∴不论为何值恒有平面⊥平面. 知..又平面⊥平面. ∴平面.∴. ∵... ∴ ∴由.得. 故当时.平面平面. 备用题 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)如图,三棱锥P-ABC中,PA⊥底面ABC,AB⊥BC,DE垂直平分PC,且分别交ACPC于D、E两点,又PB=BC,PA=AB.

(Ⅰ)求证:PC⊥平面BDE;

(Ⅱ)若点Q是线段PA上任一点,求证:BD⊥DQ;

(Ⅲ)线段PA上是否存在点Q,使得PC//平面BDQ.若存在,求出点的位置,若不存在,说明理由.

 

查看答案和解析>>

 

如图,三棱锥P-ABC中,PA⊥底面ABC,AB⊥BC,DE垂直平分PC,且分别交ACPC于D.E两点,又PB=BC,PA=AB.

(Ⅰ)求证:PC⊥平面BDE;

(Ⅱ)若点Q是线段PA上任一点,求证:BD⊥DQ;

(Ⅲ)线段PA上是否存在点Q,使得PC//平面BDQ.若存在,求出点的位置,若不存在,说明理由.

 

 

 

 

 

 

查看答案和解析>>

如图所示的长方体中,底面是边长为的正方形,的交点,是线段的中点.

(Ⅰ)求证:平面

(Ⅱ)求证:平面

(Ⅲ)求二面角的大小.

【解析】本试题主要考查了线面平行的判定定理和线面垂直的判定定理,以及二面角的求解的运用。中利用,又平面平面,∴平面,又,∴平面. 可得证明

(3)因为∴为面的法向量.∵

为平面的法向量.∴利用法向量的夹角公式,

的夹角为,即二面角的大小为

方法一:解:(Ⅰ)建立如图所示的空间直角坐标系.连接,则点

,又点,∴

,且不共线,∴

平面平面,∴平面.…………………4分

(Ⅱ)∵

,即

,∴平面.   ………8分

(Ⅲ)∵,∴平面

为面的法向量.∵

为平面的法向量.∴

的夹角为,即二面角的大小为

 

查看答案和解析>>

如图,平面ABDE⊥平面ABC,ACBC,AC=BC=4,四边形ABDE是直角梯形,BDAE,BDBA,AE=2BD=4,O、M分别为CE、AB的中点.

(Ⅰ)证明:OD//平面ABC;

(Ⅱ)能否在EM上找一点N,使得ON⊥平面ABDE?若能,请指出点N的位置,并加以证明;若不能,请说明理由.

【解析】第一问:取AC中点F,连结OF、FB.∵F是AC的中点,O为CE的中点,

∴OF∥EA且OF=且BD=

∴OF∥DB,OF=DB,

∴四边形BDOF是平行四边形。

∴OD∥FB

第二问中,当N是EM中点时,ON⊥平面ABDE。           ………7分

证明:取EM中点N,连结ON、CM, AC=BC,M为AB中点,∴CM⊥AB,

又∵面ABDE⊥面ABC,面ABDE面ABC=AB,CM面ABC,

∴CM⊥面ABDE,∵N是EM中点,O为CE中点,∴ON∥CM,

∴ON⊥平面ABDE。

 

查看答案和解析>>


同步练习册答案