题目列表(包括答案和解析)
(本题满分14分)已知
,
,
(1)若f(x)在
处取得极值,试求c的值和f(x)的单调增区间;
(2)如右图所示,若函数
的图象在
连续光滑,试猜想拉格朗日中值定理:即一定存在
使得
?(用含有a,b,f(a),f(b)的表达式直接回答)
(3)利用(2)证明:函数y=g(x)图象上任意两点的连线斜率不小于2e-4.
(本题满分14分
已知椭圆
:
的离心率为
,以原点为圆心,
椭圆的短半轴长为半径的圆与直线
相切.
⑴求椭圆C的方程;
⑵设
,
、
是椭圆
上关于
轴对称的任意两个不同的点,连结
交椭圆![]()
于另一点
,求直线
的斜率的取值范围;
⑶在⑵的条件下,证明直线
与
轴相交于定点.
(本题满分14分)
已知函数
的极大值点为
.
(Ⅰ)用实数
来表示实数
,并求
的取值范围;
(Ⅱ)当
时,
的最小值为
,求
的值;
(Ⅲ)设
,
两点的连线斜率为
.
求证:必存在
,使
.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com