下列有四个命题:①向量的模是一个正实数,②两个向量平行是两个向量相等的必要条件, ③若两个单位向量互相平行.则这两个单位向量相等,④温度含有零上和零下温度.所以 温度是向量.其中真命题个数为 [ ] A.0 B.1 C.2 D.3 查看更多

 

题目列表(包括答案和解析)

给出下列四个命题:
①函数y=|x|与函数y=(
x
)
2
表示同一个函数;
②奇函数的图象一定通过直角坐标系的原点;
③函数y=3(x-1)2的图象可由y=3x2的图象向右平移1个单位得到;
④若函数f(x)的定义域为[0,2],则函数f(2x)的定义域为[0,4];
⑤设函数f(x)是在区间[a.b]上图象连续的函数,且f(a)•f(b)<0,则方程f(x)=0在区间[a,b]上至少有一实根.
其中正确命题的序号是
③⑤
③⑤
.(填上所有正确命题的序号)

查看答案和解析>>

给出下列四个命题:
①“向量
a
b
的夹角为锐角”的充要条件是“
a
b
>0”;
②如果f(x)=lgx,则对任意的x1、x2∈(0,+∞),且x1≠x2,都有f(
x1+x2
2
)>
f(x1)+f(x2)
2

③设f(x)与g(x)是定义在同一区间[a,b]上的两个函数,若对任意x∈[a,b],都有|f(x)-g(x)|≤1成立,则称f(x)和g(x)在[a,b]上是“密切函数”,区间[a,b]称为“密切区间”.若f(x)=x2-3x+4与g(x)=2x-3在[a,b]上是“密切函数”,则其“密切区间”可以是[2,3];
④记函数y=f(x)的反函数为y=f-1(x),要得到y=f-1(1-x)的图象,可以先将y=f(x)的图象关于直线y=x做对称变换,再将所得的图象关于y轴做对称变换,再将所得的图象沿x轴向左平移1个单位,即得到y=f-1(1-x)的图象.
其中真命题的序号是
 
.(请写出所有真命题的序号)

查看答案和解析>>

(2009•济宁一模)给出下列四个命题:
①命题:“设a,b∈R,若ab=0,则a=0或b=0”的否命题是“设a,b∈R,若ab≠0,则a≠0且b≠0”; 
②将函数y=
2
sin(2x+
π
4
)的图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),再向右平移
π
4
个单位长度,得到函数y=
2
cosx的图象; 
③用数学归纳法证明(n+1)(n+2)…(n+n)=2n•1•2•3…(2n-1)(n∈N*)时,从“k”到“k+1”的证明,左边需增添的一个因式是2(2k+1); 
④函数f(x)=ex-x-1(x∈R)有两个零点.
其中所有真命题的序号是
①③
①③

查看答案和解析>>

给出下列四个命题:
①函数y=|x|与函数y=(
x
)
2
表示同一个函数;
②奇函数的图象一定通过直角坐标系的原点;
③函数y=3(x-1)2的图象可由y=3x2的图象向右平移1个单位得到;
④若函数f(x)的定义域为[0,2],则函数f(2x)的定义域为[0,4];
⑤设函数f(x)是在区间[a,b]上图象连续的函数,且f(a)-f(b)<0,则方程f(x)=0在区间[a,b]上至少有一实根.
其中正确命题的序号是(  )

查看答案和解析>>

给出下列四个命题:
①命题“?x∈R,ex>x”的否定是““?x∈R,ex<x”
②将函数y=sin(2x+
π
3
)
的图象向右平移
π
3
个单位,得到函数y=sin2x的图象;
③用数学归纳法证明(n+1)(n+2)…(n+n)=2n•1•3…(2n-1)(n∈N*)时,从“k”到“k+1”的证明,左边需增添的一个因式是2(2k+1);
④函数f(x)=ex-x-1(x∈R)有两个零点.
其中所有真命题的序号是
 

查看答案和解析>>


同步练习册答案