题目列表(包括答案和解析)
(本小题满分14分)
设
(
且
),
是
的反函数.
(Ⅰ)设关于
的方程
在区间
上有实数解,求
的取值范围;
(Ⅱ)当
(
为自然对数的底数)时,证明:
;
(Ⅲ)当
时,试比较
与4的大小,并说明理由.
(本小题满分14分)
设
(
且
),g(x)是f(x)的反函数.
(Ⅰ)设关于
的方程求
在区间[2,6]上有实数解,求t的取值范围;
(Ⅱ)当a=e(e为自然对数的底数)时,证明:
;
(Ⅲ)当0<a≤时,试比较
与4的大小,并说明理由.
(本小题满分14分)
设
(
且
),g(x)是f(x)的反函数.
(Ⅰ)设关于
的方程求
在区间[2,6]上有实数解,求t的取值范围;
(Ⅱ)当a=e(e为自然对数的底数)时,证明:
;
(Ⅲ)当0<a≤时,试比较
与4的大小,并说明理由.
如图,
,
,…,
,…是曲线
上的点,
,
,…,
,…是
轴正半轴上的点,且
,
,…,
,…
均为斜边在
轴上的等腰直角三角形(
为坐标原点).
(1)写出
、
和
之间的等量关系,以及
、
和
之间的等量关系;
(2)求证:
(
);
(3)设
,对所有
,
恒成立,求实数
的取值范围.
![]()
【解析】第一问利用有
,
得到
第二问证明:①当
时,可求得
,命题成立;②假设当
时,命题成立,即有
则当
时,由归纳假设及
,
得![]()
第三问
![]()
.………………………2分
因为函数
在区间
上单调递增,所以当
时,
最大为
,即
![]()
解:(1)依题意,有
,
,………………4分
(2)证明:①当
时,可求得
,命题成立;
……………2分
②假设当
时,命题成立,即有
,……………………1分
则当
时,由归纳假设及
,
得
.
即![]()
解得
(
不合题意,舍去)
即当
时,命题成立. …………………………………………4分
综上所述,对所有
,
. ……………………………1分
(3)
![]()
.………………………2分
因为函数
在区间
上单调递增,所以当
时,
最大为
,即
.……………2分
由题意,有![]()
.
所以,![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com