题目列表(包括答案和解析)
(本题满分8分)如图,在底面是矩形的四棱锥
中,
底面
,
分
别是
的中点,求证:
(1)
平面
;
(2)平面
平面
.高.考.资.源.网
![]()
(理)(本小题8分)如图,在四棱锥
中,底面
是矩形,
平面
,
,
,以
的中点
为球心、
为直径的球面交
于点
.
(1) 求证:平面
平面
;
(2)求点
到平面
的距离.
证明:(1)由题意,
在以
为直径的球面上,则![]()
![]()
平面
,则![]()
又
,
平面
,
∴
,![]()
平面
,
∴平面
平面
. (3分)
(2)∵
是
的中点,则
点到平面
的距离等于点
到平面
的距离的一半,由(1)知,
平面
于
,则线段
的长就是点
到平面
的距离
∵在
中,![]()
∴
为
的中点,
(7分)
则点
到平面
的距离为
(8分)
(其它方法可参照上述评分标准给分)
(本题满分8分)如图,有一块矩形空地,要在这块空地上辟一个内接四边形为绿地,使其四个顶点分别落在矩形的四条边上,已知AB=a(a>2),BC=2,且AE=AH=CF=CG,设AE=x,绿地面积为y.
(Ⅰ)写出y关于x的函数关系式,并指出这个函数的定义域;
(Ⅱ)当AE为何值时,绿地面积最大?
![]()
(本题满分8分)如图,有一块矩形空地,要在这块空地上辟一个内接四边形为绿地,使其四个顶点分别落在矩形的四条边上,已知AB=a(a>2),BC=2,且AE=AH=CF=CG,设AE=x,绿地面积为y.
(Ⅰ)写出y关于x的函数关系式,并指出这个函数的定义域;
(Ⅱ)当AE为何值时,绿地面积最大?
![]()
(本小题满分10分)如图是总体的一个样本频率分布直方图,且在[15,18
内频数为8.
(1)求样本在[15,18
内的频率;
(2)求样本容量;
(3)若在[12,15
内的小矩形面积为0.06,求在[18,33
内的频数.
![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com