对于可逆反应A2C-Q当达到平衡后.在其 他条件不变时.若增大压强.以下说法正确的是 A.正反应速度增大.逆反应速度增大.平衡向正反应方向移动 B.正反应速度增大.逆反应速度减小.平衡向正反应方向移动 C.正反应速度增小.逆反应速度增大.平衡向逆反应方向移动 D.正反应速度减大.逆反应速度增大.平衡向逆反应方向移动 查看更多

 

题目列表(包括答案和解析)

对定义域分别是F、G的函数y=f(x)、y=g(x),规定:函数h(x)=
f(x)+g(x),当x∈F且x∈G 
f(x),当x∈F且x∉G 
g(x),当x∉F且x∈G

已知函数f(x)=x2,g(x)=alnx(a∈R).
(1)求函数h(x)的解析式;
(2)对于实数a,函数h(x)是否存在最小值,如果存在,求出其最小值;如果不存在,请说明理由.

查看答案和解析>>

对于函数y=f(x),x∈(0,+∞),如果a,b,c是一个三角形的三边长,那么f(a),f(b),f(c)也是一个三角形的三边长,则称函数f(x)为“保三角形函数”.
对于函数y=g(x),x∈[0,+∞),如果a,b,c是任意的非负实数,都有g(a),g(b),g(c)是一个三角形的三边长,则称函数g(x)为“恒三角形函数”.
(Ⅰ)判断三个函数“f1(x)=x,f2(x)=
2x
,f3(x)=3x2(定义域均为x∈(0,+∞))”中,哪些是“保三角形函数”?请说明理由;
(Ⅱ)若函数g(x)=
x2+kx+1
x2-x+1
,x∈[{0,+∞})是“恒三角形函数”,试求实数k的取值范围;
(Ⅲ)如果函数h(x)是定义在(0,+∞)上的周期函数,且值域也为(0,+∞),试证明:h(x)既不是“恒三角形函数”,也不是“保三角形函数”.

查看答案和解析>>

对于在[a,b]上有意义的两个函数f(x)与g(x),如果对任意的x∈[a,b],均有|f(x)-g(x)|≤1,则称f(x)与g(x)在[a,b]上是接近的,否则称f(x)与g(x)在[a,b]上是非接近的.现在有两个函数f(x)=logt(x-3t)与g(x)=logt
1
x-t
)(t>0且t≠1),现给定区间[t+2,t+3].
(1)若t=
1
2
,判断f(x)与g(x)是否在给定区间上接近;
(2)若f(x)与g(x)在给定区间[t+2,t+3]上都有意义,求t的取值范围;
(3)讨论f(x)与g(x)在给定区间[t+2,t+3]上是否是接近的.

查看答案和解析>>

已知0<a<b,若函数f(x)=2x+
1
x
在[a,b]上单调递增,则对于任意x1,x2∈[a,b],且x1≠x2,使f(a)≤
g(x1)-g(x2)
x1-x2
≤f(b)
恒成立的函数g(x)可以是(  )

查看答案和解析>>

已知函数f(x)=log2x.
(1)若f(x)的反函数是f-1(x),解方程:f-1(2x+1)=3f-1(x)-1;
(2)当x∈(3m,3m+3](m∈N)时,定义g(x)=f(x-3m).设an=n•g(n),数列{an}的前n项和为Sn,求a1、a2、a3、a4和S3n
(3)对于任意a、b、c∈[M,+∞),且a≥b≥c.当a、b、c能作为一个三角形的三边长时,f(a)、f(b)、f(c)也总能作为某个三角形的三边长,试探究M的最小值.

查看答案和解析>>


同步练习册答案