已知平面向量.= , =(2,x) , =(2,y) 且 // , , 求 以及 和 的夹角 查看更多

 

题目列表(包括答案和解析)

已知平面向量a=(3,4),b=(9,x),c=(4,y),且abac

(1)求bc

(2)若m=2abnac,求向量mn的夹角的大小.

查看答案和解析>>

在直角坐标平面中,已知点P1(1,2),P2(2,22),P3(3,23),…,Pn(n,2n),其中n是正整数.对平面上任一点A0,记A1为A0关于点P1的对称点,A2为A1关于点P2的对称点,…,An为An-1关于点Pn的对称点.
(1)求向量
A0A2
的坐标;
(2)当点A0在曲线C上移动时,点A2的轨迹是函数y=f(x)的图象,其中f(x)是以3位周期的周期函数,且当x∈(0,3]时,f(x)=lgx.求以曲线C为图象的函数在(1,4]上的解析式;
(3)对任意偶数n,用n表示向量
A0An
的坐标.

查看答案和解析>>

在直角坐标平面中,已知点P1(1,2),P2(2,22),P3(3,23),…,Pn(n,2n),其中n是正整数,对平面上任一点A0,记A1为A0关于点P1的对称点,A2为A1关于点P2的对称点,…,An为An-1关于点Pn的对称点.
(1)求向量
A0A2
的坐标;
(2)当点A0在曲线C上移动时,点A2的轨迹是函数y=f(x)的图象,其中f(x)是以3为周期的周期函数,且当x∈(0,3]时,f(x)=lgx.求以曲线C为图象的函数在(1,4]上的解析式.

查看答案和解析>>

(1)选修4-2:矩阵与变换
已知向量
1
-1
在矩阵M=
1m
01
变换下得到的向量是
0
-1

(Ⅰ)求m的值;
(Ⅱ)求曲线y2-x+y=0在矩阵M-1对应的线性变换作用下得到的曲线方程.
(2)选修4-4:极坐标与参数方程
在直角坐标平面内,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系.已知点M的极坐标为(4
2
π
4
)
,曲线C的参数方程为
x=1+
2
cosα
y=
2
sinα
(α为参数).
(Ⅰ)求直线OM的直角坐标方程;
(Ⅱ)求点M到曲线C上的点的距离的最小值.
(3)选修4-5:不等式选讲
设实数a,b满足2a+b=9.
(Ⅰ)若|9-b|+|a|<3,求a的取值范围;
(Ⅱ)若a,b>0,且z=a2b,求z的最大值.

查看答案和解析>>

在直角坐标平面中,已知点P1(1,2),P2(2,22),P3(3,23),…,Pn(n,2n),其中n是正整数.对平面上任一点A0,记A1为A0关于点P1的对称点,A2为A1关于点P2的对称点,…,An为An-1关于点Pn的对称点.
(1)求向量
A0A2
的坐标;
(2)当点A0在曲线C上移动时,点A2的轨迹是函数y=f(x)的图象,其中f(x)是以3位周期的周期函数,且当x∈(0,3]时,f(x)=lgx.求以曲线C为图象的函数在(1,4]上的解析式;
(3)对任意偶数n,用n表示向量
A0An
的坐标.

查看答案和解析>>


同步练习册答案