22.解: ∵, (Ⅱ)∵. 又.∴ , 故要使方程有解.m的取值范围为. (Ⅲ)由知恒成立 又∵都是减函数 ∴也是减函数 ∴y在上的最小值为 ∴的取值范围是. 查看更多

 

题目列表(包括答案和解析)

(文)符号[x]表示不超过x的最大整数,如[π]=3,[-1.08]=-2,定义函数f(x)=x-[x],研究函数f(x)的性质,下列命题中正确的是_______________.

①函数f(x)的定义域为R,值域为[0,1]  ②方程f(x)=有无数个解

③函数f(x)是周期函数  ④函数f(x)是增函数  ⑤函数f(x)具有奇偶数

查看答案和解析>>

f(x)是定义在[-2π,2π]上的偶函数,当x∈[0,π]时,y=f(x)=cosx;当x∈[π,2π]时,y=f(x)的图象是斜率为,在y轴上截距为-2的直线在相应区间上的部分.

(Ⅰ)求f(-2π),f(-)的值;

(Ⅱ)写出函数y=f(x)的表达式,作出其图象并根据图象写出函数的单调区间.

查看答案和解析>>

已知y=f(x)是定义在[-1,1]上的奇函数,x∈[0,1]时,f(x)=
4x+a
4x+1

(Ⅰ)求x∈[-1,0)时,y=f(x)解析式,并求y=f(x)在x∈[0,1]上的最大值;
(Ⅱ)解不等式f(x)>
1
5

查看答案和解析>>

已知f(x)是定义在区间[-1,1]上的奇函数,且f(1)=1,若m、n∈[-1,1],m+n≠0时,有
f(m)+f(n)
m+n
>0.
(1)证明函数f(x)在其定义域上是增函数;
(2)解不等式f(x+
1
2
)<f(1-x)

查看答案和解析>>

(文)函数f(x)是定义在[-1,1]上的奇函数,且f(1)=1,若m,n∈[-1,1],m+n≠0,
f(m)+f(n)
m+n
>0

(1)证明:f(x)在[-1,1]上是增函数;
(2)解不等式f(x+
1
2
)<f(
1
x-1
)

(3)若f(x)≤4t-3•2t+3对所有x∈[-1,1]恒成立,求实数t的取值范围.

查看答案和解析>>


同步练习册答案