题目列表(包括答案和解析)
(本小题满分12分)
已知函数f(x)是定义在[-e,0)∪(0,e]上的奇函数,当x∈(0,e],f(x)=ax+lnx(其中e是自然对数的底数,a∈R)
(1)求f(x)的解析式;
(2)设g(x)=
,x∈[-e,0),求证:当a=-1时,f(x)>g(x)+
;
(3)是否存在实数a,使得当x∈[-e,0)时f(x)的最小值是3 如果存在,求出实数a的值;如果不存在,请说明理由.
.(本小题满分12分)
已知函数
是定义在实数集R上的奇函数,当
>0时,![]()
(1)已知函数
的解析式;
(2)若函数
在区间
上是单调减函数,求a的取值范围;
(3)试证明对
.
(本小题满分12分)定义在R上的奇函数
有最小正周期4,且
时,
。
⑴求
在
上的解析式;
⑵判断
在
上的单调性,并给予证明;
⑶当
为何值时,关于方程
在
上有实数解?
(本小题满分12分)
已知函数
是定义在实数集R上的奇函数,函数
是区间
上的减函数。
(I)求实数
的值;
(II)若
对
恒成立,求实数
的取值范围;
(III)讨论关于
的方程
的实根的个数
(本小题满分12分)定义在R上的奇函数
有最小正周期4,且
时,
。
⑴求
在
上的解析式;
⑵判断
在
上的单调性,并给予证明;
⑶当
为何值时,关于方程
在
上有实数解?
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com