8.设正四棱锥S-ABCD的侧棱长为.底面边长为.E是SA的中点.则异面直线BE与SC所成的角是 ( ) A.30° B.45° C.60° D.90° 查看更多

 

题目列表(包括答案和解析)

设正四棱锥S—ABCD的侧棱长为,底面边长为,E是SA的中点,则异面直线BE与SC所成的角是

[  ]

A.
B.
C.
D.

查看答案和解析>>

在四棱锥S-ABCD中,底面ABCD是边长为a的正方形,顶点S在底面内的射影O在正方形ABCD的内部(不在边上),且SO=λa,λ为常数,设侧面SAB,SBC,SCD,SDA与底面ABCD所成的二面角依次为α1,α2,α3,α4,则下列各式为常数的是
①cotα1+cotα2
②cotα1+cotα3
③cotα2+cotα3
④cotα2+cotα4
(  )

查看答案和解析>>

在四棱锥S-ABCD中,底面ABCD是边长为a的正方形,顶点S在底面内的射影O在正方形ABCD的内部(不在边上),且SO=λa,λ为常数,设侧面SAB,SBC,SCD,SDA与底面ABCD所成的二面角依次为α1,α2,α3,α4,则下列各式为常数的是
①cotα1+cotα2
②cotα1+cotα3
③cotα2+cotα3
④cotα2+cotα4
( )

A.①②
B.②④
C.②③
D.③④

查看答案和解析>>

在四棱锥S-ABCD中,底面ABCD是边长为a的正方形,顶点S在底面内的射影O在正方形ABCD的内部(不在边上),且SO=λa,λ为常数,设侧面SAB,SBC,SCD,SDA与底面ABCD所成的二面角依次为α1,α2,α3,α4,则下列各式为常数的是
①cotα1+cotα2
②cotα1+cotα3
③cotα2+cotα3
④cotα2+cotα4


  1. A.
    ①②
  2. B.
    ②④
  3. C.
    ②③
  4. D.
    ③④

查看答案和解析>>

一块边长为10的正方形纸片,按如图所示将阴影部分裁下,然后将余下的四个全等的等腰三角形作为侧面制作一个正四棱锥S-ABCD(底面是正方形,顶点在底面的射影是底面中心的四棱锥).
(1)过此棱锥的高以及一底边中点F作棱锥的截面(如图),设截面三角形面积为y,将y表为x的函数;
(2)求y的最大值及此时x的值;
(3)在第(2)问的条件下,设F是CD的中点,问是否存在这样的动点P,它在此棱锥的表面(包含底面ABCD)运动,且FP⊥AC.如果存在,在图中画出其轨迹并计算轨迹的长度,如果不存在,说明理由.

查看答案和解析>>


同步练习册答案