题目列表(包括答案和解析)
(本题满分14分)
已知函数
的最小正周期为![]()
(1)求
的单调递增区间;
(2)在
中,a、b、c分别是角A、B、C的对边,若
的面积为
,求a的值。
本小题满分14分)
已知椭圆
的左、右焦点分别为F1、F2,若以F2为圆心,b-c为半径作圆F2,过椭圆上一点P作此圆的切线,切点为T,且
的最小值不小于
。
(1)证明:椭圆上的点到F2的最短距离为
;
(2)求椭圆的离心率e的取值范围;
(3)设椭圆的短半轴长为1,圆F2与
轴的右交点为Q,过点Q作斜率为
的直线
与椭圆相交于A、B两点,若OA⊥OB,求直线
被圆F2截得的弦长S的最大值。
(本小题满分14分)已知等差数列
的前四项和为10,且
成等比数列
(1)求通项公式![]()
(2)设
,求数列
的前
项和![]()
(本小题满分14分)
已知各项均不相等的等差数列
的前四项和为14,且
恰为等比数列
的前三项。
(1)分别求数列
的前n项和![]()
(2)记为数列
的前n项和为
,设
,求证:![]()
(本小题满分14分)
已知函数![]()
(Ⅰ)若函数
有三个零点
且
,
,且
,求函数
的单调区间;
(Ⅱ)若
试问:导函数
在区间
内是否有零点,并说明理由;
(Ⅲ)在(Ⅱ)的条件下,若导数
的两个零点之间的距离不小于
,求
的取值范围。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com