C解:.当时..故舍去, .当时..故舍去, . 综上所述: 查看更多

 

题目列表(包括答案和解析)

已知数列的前项和为,且 (N*),其中

(Ⅰ) 求的通项公式;

(Ⅱ) 设 (N*).

①证明:

② 求证:.

【解析】本试题主要考查了数列的通项公式的求解和运用。运用关系式,表示通项公式,然后得到第一问,第二问中利用放缩法得到,②由于

所以利用放缩法,从此得到结论。

解:(Ⅰ)当时,由.  ……2分

若存在

从而有,与矛盾,所以.

从而由.  ……6分

 (Ⅱ)①证明:

证法一:∵

 

.…………10分

证法二:,下同证法一.           ……10分

证法三:(利用对偶式)设

.又,也即,所以,也即,又因为,所以.即

                    ………10分

证法四:(数学归纳法)①当时, ,命题成立;

   ②假设时,命题成立,即,

   则当时,

    即

故当时,命题成立.

综上可知,对一切非零自然数,不等式②成立.           ………………10分

②由于

所以

从而.

也即

 

查看答案和解析>>

有如下几个命题:

①如果是方程的两个实根且,那么不等式的解集为;

②当时,二次不等式的解集为;

与不等式的解集相同;

的解集相同.

其中正确命题的个数是(    )

A.3  B.2    C.1     D.0

 

查看答案和解析>>

已知函数f(x)=ex-ax,其中a>0.

(1)若对一切x∈R,f(x) 1恒成立,求a的取值集合;

(2)在函数f(x)的图像上去定点A(x1, f(x1)),B(x2, f(x2))(x1<x2),记直线AB的斜率为k,证明:存在x0∈(x1,x2),使恒成立.

【解析】解:.

单调递减;当单调递增,故当时,取最小值

于是对一切恒成立,当且仅当.        ①

时,单调递增;当时,单调递减.

故当时,取最大值.因此,当且仅当时,①式成立.

综上所述,的取值集合为.

(Ⅱ)由题意知,

,则.当时,单调递减;当时,单调递增.故当

从而

所以因为函数在区间上的图像是连续不断的一条曲线,所以存在使成立.

【点评】本题考查利用导函数研究函数单调性、最值、不等式恒成立问题等,考查运算能力,考查分类讨论思想、函数与方程思想等数学方法.第一问利用导函数法求出取最小值对一切x∈R,f(x) 1恒成立转化为从而得出求a的取值集合;第二问在假设存在的情况下进行推理,然后把问题归结为一个方程是否存在解的问题,通过构造函数,研究这个函数的性质进行分析判断.

 

查看答案和解析>>

箱子里有3双不同的手套,随机地拿出2只,记事件A={拿出的手套配不成对};事件B={拿出的都是同一只手上的手套};事件C={拿出的手套一只是左手的,一只是右手的,但配不成对}。(本小题满分13分)

(1)请罗列出所有的基本事件;

(2)分别求事件A、事件B、事件C的概率;

(3)说出事件A、事件B、事件C的关系。

【解析】第一问利用分别设3双手套为:分别代表左手手套,分别代表右手手套。

第二问①事件A包含12个基本事件,故P(A)= ,(或能配对的只有3个基本事件,

P(A)= );

②事件B包含6个基本事件,故P(B)=

事件C包含6个基本事件,故P(C)=

第三问

解:(1)分别设3双手套为:分别代表左手手套,分别代表右手手套。…………2分

箱子里 的3双不同的手套,随机地拿出2只,所有的基本事件是:

)、()、()、()、(

 ,)、()、()、();

)、()、(

)、()、()  共15个基本事件。 ……………5分

(2)①事件A包含12个基本事件,故P(A)= ,(或能配对的只有3个基本事件,

P(A)= );                    ……………7分

②事件B包含6个基本事件,故P(B)= ;…………9分

③事件C包含6个基本事件,故P(C)= 。…………11分

⑶ 

 

查看答案和解析>>

已知函数.(

(1)若在区间上单调递增,求实数的取值范围;

(2)若在区间上,函数的图象恒在曲线下方,求的取值范围.

【解析】第一问中,首先利用在区间上单调递增,则在区间上恒成立,然后分离参数法得到,进而得到范围;第二问中,在区间上,函数的图象恒在曲线下方等价于在区间上恒成立.然后求解得到。

解:(1)在区间上单调递增,

在区间上恒成立.  …………3分

,而当时,,故. …………5分

所以.                 …………6分

(2)令,定义域为

在区间上,函数的图象恒在曲线下方等价于在区间上恒成立.   

        …………9分

① 若,令,得极值点

,即时,在(,+∞)上有,此时在区间上是增函数,并且在该区间上有,不合题意;

,即时,同理可知,在区间上递增,

,也不合题意;                     …………11分

② 若,则有,此时在区间上恒有,从而在区间上是减函数;

要使在此区间上恒成立,只须满足

由此求得的范围是.        …………13分

综合①②可知,当时,函数的图象恒在直线下方.

 

查看答案和解析>>


同步练习册答案