20.解析:设∠AOB=θ,由余弦定理知AB2=OA2+OB2-2OA·OB·cosθ=5-4cosθ ∴S△ABC=θ S△AOB= ∴S四边形OACB= 当θ=时.S四边形OACB最大, 最大值为+2 查看更多

 

题目列表(包括答案和解析)

已知扇形OAB的半径为3,圆心角∠AOB=60°,过弧AB上的动点P作平行于BO的直线交AO于点Q,设∠AOP=θ.
(1)求△POQ的面积S关于θ的函数解析式S=f(θ);
(2)θ为何值时,S=f(θ)有最大值?并求出该最大值.

查看答案和解析>>

(2012•嘉定区三模)如图,设A、B是单位圆O上的动点,且A、B分别在第一、二象限.C是圆O与x轴正半轴的交点,△AOB为等边三角形.记以Ox轴正半轴为始边,射线OA为终边的角为θ.
(1)若点A的坐标为(
3
5
4
5
),求
sin2θ+sin2θ
cos2θ+cos2θ
的值;
(2)设f(θ)=|BC|2,求函数f(θ)的解析式和值域.

查看答案和解析>>

(2012•嘉定区三模)如图,角θ的始边OA落在x上轴,其始边、终边分别与单位圆交于点A、C(0<θ<
π
2
),△AOB为等边三角形.
(1)若点C的坐标为(
4
5
3
5
),求cos∠BOC的值;
(2)设f(θ)=|BC|2,求函数f(θ)的解析式和值域.

查看答案和解析>>

如图,设A、B是单位圆O上的动点,且A、B分别在第一、二象限.C是圆O与x轴正半轴的交点,△AOB为等边三角形.记以Ox轴正半轴为始边,射线OA为终边的角为θ.
(1)若点A的坐标为(),求的值;
(2)设f(θ)=|BC|2,求函数f(θ)的解析式和值域.

查看答案和解析>>

如图,角θ的始边OA落在x上轴,其始边、终边分别与单位圆交于点A、C(0<θ<),△AOB为等边三角形.
(1)若点C的坐标为(),求cos∠BOC的值;
(2)设f(θ)=|BC|2,求函数f(θ)的解析式和值域.

查看答案和解析>>


同步练习册答案