4.在正数项列{an}中.a2n+3=an+1,an+5,且a3=2,a11=8,则a7= 查看更多

 

题目列表(包括答案和解析)

在正数项列{an}中,且a3=2,a11=8,则=        

 

查看答案和解析>>

(2006•朝阳区一模)在各项均为正数的数列{an}中,前n项和Sn满足2Sn+1=an(2an+1),n∈N*
(Ⅰ)证明{an}是等差数列,并求这个数列的通项公式及前n项和的公式;
(Ⅱ)在XOY平面上,设点列Mn(xn,yn)满足an=nxn,Sn=n2yn,且点列Mn在直线C上,Mn中最高点为Mk,若称直线C与x轴、直线x=a,x=b所围成的图形的面积为直线C在区间[a,b]上的面积,试求直线C在区间[x3,xk]上的面积.

查看答案和解析>>

(2013•东坡区一模)已知数列{an}中,a1=6,an+1=an+1,数列{bn},点(n,bn)在过点A(0,1)的直线l上,若l上有两点B、C,向量
BC
=(1,2).
(1)求数列{an},{bn}的通项公式;
(2)设cn=2 bn,在ak与ak+1之间插入k个ck,依次构成新数列,试求该数列的前2013项之和;
(3)对任意正整数n,不等式(1+
1
b1
)(1+
1
b2
)•…•(1+
1
bn
)-a
n-2+an
≥0恒成立,求正数a的范围.

查看答案和解析>>

(2006•朝阳区一模)在各项均为正数的数列{an}中,前n项和Sn满足2Sn+1=an(2an+1),n∈N*
(Ⅰ)证明{an}是等差数列,并求这个数列的通项公式及前n项和的公式;
(Ⅱ)在XOY平面上,设点列Mn(xn,yn)满足an=nxn,Sn=n2yn,且点列Mn在直线C上,Mn中最高点为Mk,若称直线C与x轴、直线x=a、x=b所围成的图形的面积为直线C在区间[a,b]上的面积,试求直线C在区间[x3,xk]上的面积;
(Ⅲ)是否存在圆心在直线C上的圆,使得点列Mn中任何一个点都在该圆内部?若存在,求出符合题目条件的半径最小的圆;若不存在,请说明理由.

查看答案和解析>>

在各项均为正数的数列{an}中,前n项和Sn满足2Sn+1=an(2an+1),n∈N*
(1)证明{an}是等差数列,并求这个数列的通项公式及前n项和的公式;
(2)在平面直角坐标系xoy面上,设点Mn(xn,yn)满足an=nxn,Sn=n2yn,且点Mn在直线l上,Mn中最高点为Mk,若称直线l与x轴.直线x=a,x=b所围成的图形的面积为直线l在区间[a,b]上的面积,试求直线l在区间[x3,xk]上的面积;
(3)若存在圆心在直线l上的圆纸片能覆盖住点列Mn中任何一个点,求该圆纸片最小面积.

查看答案和解析>>


同步练习册答案