当n=1时.a1=S1=1 当n2时.a1=Sn-Sn-1=3-2n ∴an=3-2n bn=53-2n ∵ b1=5 ∴{bn}是以5为首项.为公比的等比数列. ∴ 查看更多

 

题目列表(包括答案和解析)

平面内与两定点A1(-a,0),A2(a,0)(a>0)连线的斜率之积等于非零常数m的点的轨迹,加上A1、A2两点所成的曲线C可以是圆、椭圆成双曲线.
(Ⅰ)求曲线C的方程,并讨论C的形状与m值的关系;
(Ⅱ)当m=-1时,对应的曲线为C1;对给定的m∈(-1,0)∪(0,+∞),对应的曲线为C2,设F1、F2是C2的两个焦点.试问:在C1上,是否存在点N,使得△F1NF2的面积S=|m|a2.若存在,求tanF1NF2的值;若不存在,请说明理由.

查看答案和解析>>

精英家教网在期末考试中,某位同学的语文,数学,英语,物理,化学,政治,历史和地理的成绩分别为a1,a2,a3,a4,a5,a6,a7和a8,具体成绩如表:
科目 语文 数学 英语 物理 化学 政治 历史 地理
成绩 75 90 80 75 85 84 70 60
(1)如图是求该同学的总分的算法程序框图.如果按照表中顺序依次输入,当n=6时,求输出S的值;
(2)记语文、数学、英语、物理四门学科成绩的平均数为
.
x
,方差为s2
①求
.
x
和s2
②采用随机抽样的方法,从语文、数学、英语、物理四门学科成绩中,任意抽取两门学科成绩,分别记为a,b.令x=(a-
.
x
2+(b-
.
x
2,求随机事件“x≤50”的概率.

查看答案和解析>>

数列{an},{bn}(n=1,2,3,…)由下列条件确定:①a1<0,b1>0;②当k≥2时,ak与bk满足:ak-1+bk-1≥0时,ak=ak-1,bk=
ak-1+bk-1
2
;当ak-1+bk-1<0时,ak=
ak-1+bk-1
2
,bk=bk-1
(Ⅰ)若a1=-1,b1=1,,求a2,a3,a4,并猜想数列{an}的通项公式(不需要证明);
(Ⅱ)在数列{bn}中,若b1>b2>…bs(s≥3,且s∈N*),试用a1,b1表示bk,k∈{1,2,…,s};
(Ⅲ)在(Ⅰ)的条件下,设数列{cn}(n∈N*)满足c1=
1
2
,cn≠0,cn+1=-
22-m
mam
cn2+cn
 (其中m为给定的不小于2的整数),求证:当n≤m时,恒有cn<1.

查看答案和解析>>

已知数列{an}中,a1=1,当n≥2时,其前n项和Sn满足S=an(Sn-).

(1)证明:是等差数列,求Sn的表达式;

(2)设bn=,求{bn}的前n项和Tn.

 

查看答案和解析>>

数列{an},{bn}(n=1,2,3,…)由下列条件确定:①a1<0,b1>0;②当k≥2时,ak与bk满足:ak-1+bk-1≥0时,ak=ak-1,bk=;当ak-1+bk-1<0时,ak=,bk=bk-1
(Ⅰ)若a1=-1,b1=1,,求a2,a3,a4,并猜想数列{an}的通项公式(不需要证明);
(Ⅱ)在数列{bn}中,若b1>b2>…bs(s≥3,且s∈N*),试用a1,b1表示bk,k∈{1,2,…,s};
(Ⅲ)在(Ⅰ)的条件下,设数列{cn}(n∈N*)满足c1=,cn≠0,cn+1=- (其中m为给定的不小于2的整数),求证:当n≤m时,恒有cn<1.

查看答案和解析>>


同步练习册答案