题目列表(包括答案和解析)
(本小题10分)
已知
。
(1)求f(x)的解析式,并写出定义域;
(2)判断f(x)的奇偶性并证明;
(3)当a>1时,求使f(x)
成立的x的集合。
(本小题10分)已知函数
=
.
(1)用定义证明函数
在(-∞,+∞)上为减函数;
(2)若x
[1,2],求函数
的值域;
(3)若
=
,且当x
[1,2]时![]()
恒成立,求实数
的取值范围.
函数
是定义在
上的奇函数,且
。
(1)求实数a,b,并确定函数
的解析式;
(2)判断
在(-1,1)上的单调性,并用定义证明你的结论;
(3)写出
的单调减区间,并判断
有无最大值或最小值?如有,写出最大值或最小值。(本小问不需要说明理由)
【解析】本试题主要考查了函数的解析式和奇偶性和单调性的综合运用。第一问中,利用函数
是定义在
上的奇函数,且
。
解得
,![]()
(2)中,利用单调性的定义,作差变形判定可得单调递增函数。
(3)中,由2知,单调减区间为
,并由此得到当,x=-1时,
,当x=1时,![]()
解:(1)
是奇函数,
。
即
,
,
………………2分
,又
,
,
,![]()
(2)任取
,且
,
,………………6分
,![]()
,
,
,
,
在(-1,1)上是增函数。…………………………………………8分
(3)单调减区间为
…………………………………………10分
当,x=-1时,
,当x=1时,
。
(本小题10分)
已知
。
(1)求f(x)的解析式,并写出定义域;(2)判断f(x)的奇偶性并证明;
(2)当a>1时,求使f(x)
成立的x的集合。
(本题满分10分,其中第1小题5分,第二小题5分)
规定含污物体的清洁度为:
。现对1个单位质量的含污物体进行清洗,清洗前其清洁度为0.8,要求洗完后的清洁度是0.99。有两种方案可供选择,方案甲:一次清洗;方案乙:两次清洗。该物体初次清洗后受残留水等因素影响,其质量变为a(1≤a≤3)。设用x单位质量的水初次清洗后的清洁度是
(
),用y质量的水第二次清洗后的清洁度是
,其中c(
)是该物体初次清洗后的清洁度。
(Ⅰ)分别求出方案甲以及
时方案乙的用水量,并比较哪一种方案用水量较少;
(Ⅱ)若采用方案乙,当a为某定值时,如何安排初次与第二次清洗的用水量,使总用水量最少?并讨论a取不同数值时对最少总用水量多少的影响。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com