19.已知求不等式的解集. 查看更多

 

题目列表(包括答案和解析)

下列命题(i为虚数单位)中正确的是
①已知a,b∈R,则a=b是(a-b)+(a+b)i为纯虚数的充要条件;
②当z是非零实数时,|z+
1
z
|≥2恒成立;
③复数z=(1-i)3的实部和虚部都是-2;
④如果|a+2i|<|-2+i|,则实数a的取值范围是-1<a<1;
⑤复数z=1-i,则
1
z
+z=
3
2
+
1
2
i
其中正确的命题的序号是
②③④
②③④
.(注:把你认为正确的命题的序号都填上).

查看答案和解析>>

黑板上有一道有正解的解三角形的习题,一位同学不小心把其中一部分擦去了,现在只能看到:在△ABC中,角A、B、C的对边分别为a、b、c,已知a=2,…,解得b=
6
,根据以上信息,你认为下面哪个选项可以作为这个习题的其余已知条件 (  )
A、A=30°,B=45°
B、c=1,cosC=
1
3
C、B=60°,c=3
D、C=75°,A=45°

查看答案和解析>>

(本小题满分13分)

古汉集团生产的A,B两种型号的口服液供出口,国家为鼓励产品出口,采用出口退税政策:出口价值为a万元的/1产品可获得万元的退税款,出口价值为b万元的B产品可获得万元的退税款.已知厂家出口总价值为100万元的A、B两种口服液,且两种口服液的出口价值都不低于10万元.

(1) 当时,请你制定一个方案,使得在这次出口贸易中该企业获得的退税款最多,并求出其最大值;(精确到0.1,参考数据:)

(2) 记该企业获得的退税款的最大值函数为,,求的表达式.

 

查看答案和解析>>

(本小题15分)

先阅读下列不等式的证法,再解决后面的问题:已知求证

 证明:构造函数因为对一切,恒有,所以4-8,从而

(1)若,且,请写出上述结论的推广式;

(2)参考上述证法,对你的结论加以证明;

(3)若,求证.[

 

查看答案和解析>>

请阅读下列不等式的证法:已知,求证:

证明:构造函数,

因为对一切,恒有≥0,所以≤0,从而得

请回答下面的问题:

(1)若,请写出上述结论的推广式

(2)参考上述证法,请证明你的推广式.

查看答案和解析>>


同步练习册答案