15.由三角形的性质通过类比推理.得到四面体的如下性质:四面体的六个二面角的平分面交于一点.且这个点是四面体内切球的球心.那么原来三角形的性质为 . 答案:三角形内角平分线交于一点.且这个点是三角形内切圆的圆心 查看更多

 

题目列表(包括答案和解析)

12、由三角形的性质通过类比推理,得到四面体的如下性质:四面体的六个二面角的平分面交于一点,且这个点是四面体内切球的球心,那么原来三角形的性质为三角形内角平分线交于一点,且这个点是三角形内切圆的
圆心

查看答案和解析>>

由三角形的性质通过类比推理,得到四面体的如下性质:四面体的六个二面角的平分面交于一点,且这个点是四面体内切球的球心,那么原来三角形的性质为三角形内角平分线交于一点,且这个点是三角形内切圆的______.

查看答案和解析>>

由三角形的性质通过类比推理,得到四面体的如下性质:四面体的六个二面角的平分面交于一点,且这个点是四面体内切球的球心,那么原来三角形的性质为     

查看答案和解析>>

由三角形的性质通过类比推理,得到四面体的如下性质:四面体的六个二面角的平分面交于一点,且这个点是四面体内切球的球心,那么原来三角形的性质为   _______________________________  

查看答案和解析>>

由三角形的性质通过类比推理,得到四面体的如下性质:四面体的六个二面角的平分面交于一点,且这个点是四面体内切球的球心,那么原来三角形的性质为三角形内角平分线交于一点,且这个点是三角形内切圆的________.

查看答案和解析>>


同步练习册答案