4.解:(1) .为偶函数 (2).当.则.即, 当.则.即.∴. 查看更多

 

题目列表(包括答案和解析)

D

解析:当x>0时,,即

则函数在区间(0,+∞)上为减函数,又在定义域上是奇函数,

∴函数在定义域上是偶函数,且,则>0在(0,+∞)上的解集是(0,2);

函数是定义域上的奇函数,则>0的解集是(-∞,-2)∪(0,2).

查看答案和解析>>

D

解析:当x>0时,,即

则函数在区间(0,+∞)上为减函数,又在定义域上是奇函数,

∴函数在定义域上是偶函数,且,则>0在(0,+∞)上的解集是(0,2);

函数是定义域上的奇函数,则>0的解集是(-∞,-2)∪(0,2).

查看答案和解析>>

D

解析:当x>0时,,即

则函数在区间(0,+∞)上为减函数,又在定义域上是奇函数,

∴函数在定义域上是偶函数,且,则>0在(0,+∞)上的解集是(0,2);

函数是定义域上的奇函数,则>0的解集是(-∞,-2)∪(0,2).

查看答案和解析>>

已知函数y=f(x)是定义域为R的偶函数,且对x∈R,恒有f(1+x)=f(1-x).又当x∈[0,1]时,f(x)=x.
(1)当x∈[-1,0]时,求f(x)的解析式;
(2)求证:函数y=f(x)(x∈R)是以T=2为周期的周期函数;
(3)解答本小题考生只需从下列三个问题中选择一个写出结论即可(无需写解题步骤).注意:考生若选择多于一个问题解答,则按分数最低一个问题的解答正确与否给分.
①当x∈[2n-1,2n](n∈Z)时,求f(x)的解析式.
②当x∈[2n-1,2n+1](其中n是给定的正整数)时,若函数y=f(x)的图象与函数y=kx的图象有且仅有两个公共点,求实数k的取值范围.
③当x∈[0,2n](n是给定的正整数且n≥3)时,求f(x)的解析式.

查看答案和解析>>

(2012•黄浦区二模)已知函数y=f(x)是定义域为R的偶函数,且对x∈R,恒有f(1+x)=f(1-x).又当x∈[0,1]时,f(x)=x.
(1)当x∈[-1,0]时,求f(x)的解析式;
(2)求证:函数y=f(x)(x∈R)是以T=2为周期的周期函数;
(3)解答本小题考生只需从下列三个问题中选择一个写出结论即可(无需写解题步骤).注意:考生若选择多于一个问题解答,则按分数最低一个问题的解答正确与否给分.
①当x∈[2n-1,2n](n∈Z)时,求f(x)的解析式.
②当x∈[2n-1,2n+1](其中n是给定的正整数)时,若函数y=f(x)的图象与函数y=kx的图象有且仅有两个公共点,求实数k的取值范围.
③当x∈[0,2n](n是给定的正整数且n≥3)时,求f(x)的解析式.

查看答案和解析>>


同步练习册答案