已知函数对任意实数都有 .且.那么( ) (A) (B) (C) (D) 的大小无法确定 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)=6x–6x2,设函数g1(x)=f(x), g2(x)=fg1(x)], g3(x)=f g2(x)],…gn(x)=fgn–1(x)],…

(1)求证:如果存在一个实数x0,满足g1(x0)=x0,那么对一切n∈N,gn(x0)=x0都成立;

(2)若实数x0满足gn(x0)=x0,则称x0为稳定不动点,试求出所有这些稳定不动点;

(3)设区间A=(–∞,0),对于任意x∈A,有g1(x)=f(x)=a<0, g2(x)=fg1(x)]=f(0)<0,

n≥2时,gn(x)<0  试问是否存在区间BAB),对于区间内任意实数x,只要n≥2,都有gn(x)<0.

查看答案和解析>>

已知函数,若数列{an}满足an=f(n)(n∈N+)且对任意的两个正整数m,n(m≠n)都有(m-n)(am-an)>0,那么实数a的取值范围是( )
A.[,3)
B.(,3)
C.(2,3)
D.(1,3)

查看答案和解析>>

已知函数,若数列{an}满足an=f(n)(n∈N+)且对任意的两个正整数m,n(m≠n)都有(m-n)(am-an)>0,那么实数a的取值范围是( )
A.[,3)
B.(,3)
C.(2,3)
D.(1,3)

查看答案和解析>>

已知函数f(x)=6x–6x2,设函数g1(x)=f(x), g2(x)=fg1(x)], g3(x)=f g2(x)],…gn(x)=fgn–1(x)],…
(1)求证:如果存在一个实数x0,满足g1(x0)=x0,那么对一切n∈N,gn(x0)=x0都成立;
(2)若实数x0满足gn(x0)=x0,则称x0为稳定不动点,试求出所有这些稳定不动点;
(3)设区间A=(–∞,0),对于任意x∈A,有g1(x)=f(x)=a<0, g2(x)=fg1(x)]=f(0)<0,
n≥2时,gn(x)<0 试问是否存在区间BAB),对于区间内任意实数x,只要n≥2,都有gn(x)<0.

查看答案和解析>>

已知以下四个命题:
①如果x1,x2是一元二次方程ax2+bx+c=0的两个实根,且x1<x2,那么不等式ax2+bx+c<0的解集为{x|x1<x<x2};
②若
x-1x-2
≤0
,则(x-1)(x-2)≤0;
③“若m>2,则x2-2x+m>0的解集是实数集R”的逆否命题;
④定义在R的函数f(x),且对任意的x∈R都有:f(-x)=-f(x),f(1+x)=f(1-x),则4是y=f(x)的一个周期.其中为真命题的是
 
(填上你认为正确的序号).

查看答案和解析>>


同步练习册答案