题目列表(包括答案和解析)
已知函数
(
为实数).
(Ⅰ)当
时,求
的最小值;
(Ⅱ)若
在
上是单调函数,求
的取值范围.
【解析】第一问中由题意可知:
. ∵
∴
∴![]()
.
当
时,
;
当
时,
. 故
.
第二问![]()
.
当
时,
,在
上有
,
递增,符合题意;
令
,则![]()
,∴
或
在
上恒成立.转化后解决最值即可。
解:(Ⅰ) 由题意可知:
. ∵
∴
∴![]()
.
当
时,
;
当
时,
. 故
.
(Ⅱ) ![]()
.
当
时,
,在
上有
,
递增,符合题意;
令
,则![]()
,∴
或
在
上恒成立.∵二次函数
的对称轴为
,且![]()
∴
或![]()
或![]()
或![]()
或
. 综上![]()
一段长为32米的篱笆围成一个一边靠墙的矩形菜园,墙长18米,问这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少?
【解析】解:令矩形与墙垂直的两边为宽并设矩形宽为
,则长为![]()
所以矩形的面积
(
) (4分
=128 (8分)
当且仅当
时,即
时等号成立,此时
有最大值128
所以当矩形的长为
=16,宽为8时,
菜园面积最大,最大面积为128 (13分)答:当矩形的长为16米,宽为8米时。菜园面积最大,最大面积为128平方米(注:也可用二次函数模型解答)
D
解析:当x>0时,
,即
令
,
则函数
在区间(0,+∞)上为减函数,又
在定义域上是奇函数,
∴函数
在定义域上是偶函数,且
,则
>0在(0,+∞)上的解集是(0,2);
函数
是定义域上的奇函数,则
>0的解集是(-∞,-2)∪(0,2).
D
解析:当x>0时,
,即
令
,
则函数
在区间(0,+∞)上为减函数,又
在定义域上是奇函数,
∴函数
在定义域上是偶函数,且
,则
>0在(0,+∞)上的解集是(0,2);
函数
是定义域上的奇函数,则
>0的解集是(-∞,-2)∪(0,2).
D
解析:当x>0时,
,即
令
,
则函数
在区间(0,+∞)上为减函数,又
在定义域上是奇函数,
∴函数
在定义域上是偶函数,且
,则
>0在(0,+∞)上的解集是(0,2);
函数
是定义域上的奇函数,则
>0的解集是(-∞,-2)∪(0,2).
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com