4.解: 令.则 对称轴.而 是的递增区间.当时. . 查看更多

 

题目列表(包括答案和解析)

已知函数

(Ⅰ)求函数的单调递减区间;

(Ⅱ)令函数),求函数的最大值的表达式

【解析】第一问中利用令,

第二问中,=

=

= ,则借助于二次函数分类讨论得到最值。

(Ⅰ)解:令,

的单调递减区间为:…………………4

(Ⅱ)解:=

=

=

 ,则……………………4

对称轴

①   当时,=……………1

②  当时,=……………1

③  当时,   ……………1

综上:

 

查看答案和解析>>

已知函数为实数).

(Ⅰ)当时,求的最小值;

(Ⅱ)若上是单调函数,求的取值范围.

【解析】第一问中由题意可知:. ∵ ∴  ∴.

时,; 当时,. 故.

第二问.

时,,在上有递增,符合题意;  

,则,∴上恒成立.转化后解决最值即可。

解:(Ⅰ) 由题意可知:. ∵ ∴  ∴.

时,; 当时,. 故.

(Ⅱ) .

时,,在上有递增,符合题意;  

,则,∴上恒成立.∵二次函数的对称轴为,且

  .   综上

 

查看答案和解析>>

已知函数 R).

(Ⅰ)若 ,求曲线  在点  处的的切线方程;

(Ⅱ)若  对任意  恒成立,求实数a的取值范围.

【解析】本试题主要考查了导数在研究函数中的运用。

第一问中,利用当时,

因为切点为(), 则,                 

所以在点()处的曲线的切线方程为:

第二问中,由题意得,即可。

Ⅰ)当时,

,                                  

因为切点为(), 则,                  

所以在点()处的曲线的切线方程为:.    ……5分

(Ⅱ)解法一:由题意得,.      ……9分

(注:凡代入特殊值缩小范围的均给4分)

,           

因为,所以恒成立,

上单调递增,                            ……12分

要使恒成立,则,解得.……15分

解法二:                 ……7分

      (1)当时,上恒成立,

上单调递增,

.                  ……10分

(2)当时,令,对称轴

上单调递增,又    

① 当,即时,上恒成立,

所以单调递增,

,不合题意,舍去  

②当时,, 不合题意,舍去 14分

综上所述: 

 

查看答案和解析>>


同步练习册答案