解:(1)当时. 为递增, 为递减 为递增区间为, 为递减区间为. (2)为偶函数.则 查看更多

 

题目列表(包括答案和解析)

已知递增等差数列满足:,且成等比数列.

(1)求数列的通项公式

(2)若不等式对任意恒成立,试猜想出实数的最小值,并证明.

【解析】本试题主要考查了数列的通项公式的运用以及数列求和的运用。第一问中,利用设数列公差为

由题意可知,即,解得d,得到通项公式,第二问中,不等式等价于,利用当时,;当时,;而,所以猜想,的最小值为然后加以证明即可。

解:(1)设数列公差为,由题意可知,即

解得(舍去).      …………3分

所以,.        …………6分

(2)不等式等价于

时,;当时,

,所以猜想,的最小值为.     …………8分

下证不等式对任意恒成立.

方法一:数学归纳法.

时,,成立.

假设当时,不等式成立,

时,, …………10分

只要证  ,只要证 

只要证  ,只要证 

只要证  ,显然成立.所以,对任意,不等式恒成立.…14分

方法二:单调性证明.

要证 

只要证  ,  

设数列的通项公式,        …………10分

,    …………12分

所以对,都有,可知数列为单调递减数列.

,所以恒成立,

的最小值为

 

查看答案和解析>>

已知函数.(

(1)若在区间上单调递增,求实数的取值范围;

(2)若在区间上,函数的图象恒在曲线下方,求的取值范围.

【解析】第一问中,首先利用在区间上单调递增,则在区间上恒成立,然后分离参数法得到,进而得到范围;第二问中,在区间上,函数的图象恒在曲线下方等价于在区间上恒成立.然后求解得到。

解:(1)在区间上单调递增,

在区间上恒成立.  …………3分

,而当时,,故. …………5分

所以.                 …………6分

(2)令,定义域为

在区间上,函数的图象恒在曲线下方等价于在区间上恒成立.   

        …………9分

① 若,令,得极值点

,即时,在(,+∞)上有,此时在区间上是增函数,并且在该区间上有,不合题意;

,即时,同理可知,在区间上递增,

,也不合题意;                     …………11分

② 若,则有,此时在区间上恒有,从而在区间上是减函数;

要使在此区间上恒成立,只须满足

由此求得的范围是.        …………13分

综合①②可知,当时,函数的图象恒在直线下方.

 

查看答案和解析>>

已知函数f(x)=x2-alnx在(1,2)上是递增函数,g(x)=x-a
x
在(0,1)上为减函数.
(1)求f(x),g(x)的表达式;
(2)求证:当x>0时,方程f(x)=g(x)+2有唯一解;
(3)当b>-1时,若f(x)≥2bx-
1
x2
在x∈(0,1)内恒成立,求b的取值范围.

查看答案和解析>>

已知函数f(x)=x2-alnx在(1,2)上是递增函数,g(x)=x-数学公式在(0,1)上为减函数.
(1)求f(x),g(x)的表达式;
(2)求证:当x>0时,方程f(x)=g(x)+2有唯一解;
(3)当b>-1时,若f(x)数学公式在x∈(0,1)内恒成立,求b的取值范围.

查看答案和解析>>

已知函数f(x)=x2-alnx在(1,2)上是递增函数,g(x)=x-在(0,1)上为减函数.
(1)求f(x),g(x)的表达式;
(2)求证:当x>0时,方程f(x)=g(x)+2有唯一解;
(3)当b>-1时,若f(x)在x∈(0,1)内恒成立,求b的取值范围.

查看答案和解析>>


同步练习册答案