函数与的图象在上交点的个数是 . 查看更多

 

题目列表(包括答案和解析)

已知函数,设

(Ⅰ)求的单调区间;

(Ⅱ)若以图象上任意一点为切点的切线的斜率 恒成立,求实数的最小值;

(Ⅲ)是否存在实数,使得函数的图象与的图象恰好有四个不同的交点?若存在,求出的取值范围,若不存在,说明理由。

 

查看答案和解析>>

已知函数在区间[0,1]上单调递增,在区间[1,2]上单调递减。

(1)求的值;

(2)若斜率为24的直线是曲线的切线,求此直线方程;

(3)是否存在实数b,使得函数的图象与函数的图象恰有2个不同交点?若存在,求出实数b的值;若不存在,试说明理由.

 

查看答案和解析>>

已知函数f(x)=-x2+8x,g(x)=6lnx+m,
(Ⅰ)求f(x)在区间[t,t+1]上的最大值h(t);
(Ⅱ)是否存在实数m,使得y=f(x)的图象与y=g(x)的图象有且只有三个不同的交点?若存在,求出m的取值范围;若不存在,说明理由。

查看答案和解析>>

已知函数f(x)=-x2+8x,g(x)=6lnx+m。
(1)求f(x)在区间[t,t+1]上的最大值h(t);
(2)是否存在实数m,使得y=f(x)的图象与y=g(x)的图象有且只有三个不同的交点?若存在,求出m的取值范围;若不存在,说明理由。

查看答案和解析>>

已知函数f(x)=-x+8x,g(x)=6lnx+m

(Ⅰ)求f(x)在区间[t,t+1]上的最大值h(t);

(Ⅱ)是否存在实数m,使得y=f(x)的图象与y=g(x)的图象有且只有三个不同的交点?若存在,求出m的取值范围;,若不存在,说明理由。

查看答案和解析>>


同步练习册答案