解:从高三年级抽取的学生人数为 而抽取的比例为.高中部共有的学生为 甲班 乙班 2 5 6 6 2 8 6 6 4 2 7 4 6 8 2 8 2 4 5 6 8 6 9 2 4.解: 乙班级总体成绩优于甲班. 查看更多

 

题目列表(包括答案和解析)

某校从参加高三年级理科综合物理考试的学生中随机抽出名学生,将其数学成绩(均为整数)分成六段后得到如下部分频率分布直方图.观察图形的信息,回答下列问题:

(Ⅰ)求分数在内的频率,并补全这个频率分布直方图;

(Ⅱ)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试的

平均分;

(Ⅲ)若从名学生中随机抽取人,抽到的学生成绩在分,在分,

分,用表示抽取结束后的总记分,求的分布列和数学期望.

【解析】(1)中利用直方图中面积和为1,可以求解得到分数在内的频率为

(2)中结合平均值可以得到平均分为:

(3)中用表示抽取结束后的总记分x, 学生成绩在的有人,在的有人,在的有人,结合古典概型的概率公式求解得到。

(Ⅰ)设分数在内的频率为,根据频率分布直方图,则有,可得,所以频率分布直方图如右图.……4分

(求解频率3分,画图1分)

(Ⅱ)平均分为:……7分

(Ⅲ)学生成绩在的有人,在的有人,

的有人.并且的可能取值是.    ………8分

.(每个1分)

所以的分布列为

0

1

2

3

4

…………………13分

 

查看答案和解析>>

甲乙两个学校高三年级分别有1100人和1000人,为了了解这两个学校全体高三年级学生在该地区二模考试中的数学成绩情况,采用分层抽样方法从两个学校一共抽取了105名学生的数学成绩,并作出了如下的频数分布统汁表,规定考试成绩在[120,150]内为优秀.
甲校:
分组 [70,80) [80,90) [90,100) [100,110)
频数 2 3 10 15
分组 [110,120) [120,130) [130,140) [140,150)
频数 15 x 3 1
乙校:
分组 [70,80) [80,90) [90,100) [100,110)
频数 1 2 9 8
分组 [110,120) [120,130) [130,140) [140,150)
频数 10 10 y 3
(I)试求x,y的值;
(II)统计方法中,同一组数据常用该区间的中点值作为代表,试根据抽样结果分别估计甲校和乙校的数学成绩的平均分.(精确到0.1).
(III)若规定考试成绩在[120,150]内为优秀,由以上统计数据填写右面2X2列联表,若按是否优秀来判断,是否有97.5%的把握认为两个学校的数学成绩有差异.
甲校 乙校 总计
优秀
非优秀
总计
附:
K
2
 
=
n(ad-bc
)
2
 
(a+b)(c+d)(a+c)(b+d)

查看答案和解析>>

甲乙两个学校高三年级分别有1100人,1000人,为了了解两个学校全体高三年级学生在该地区二模考试的数学成绩情况,采用分层抽样方法从两个学校一共抽取了105名学生的数学成绩,并作出了频数分布统计表如下:
                                                  甲校
分组 [70,80) [80,90) [90,100) [100,110)
频道 2   10 15
分组 [110,120) [120,130) [130,140) [140,150)
频数 15 x 3 1
乙校
分组 [70,80) [80,90) [90,100) [100,110)
频道 1 2 9 8
分组 [110,120) [120,130) [130,140) [140,150)
频数 10 10 y 3
(Ⅰ)计算x,y的值.
(Ⅱ)若规定考试成绩在[120,150]内为优秀,请分别估计两个学校数学成绩的优秀率;
  甲校 乙校 总计
优秀      
非优秀      
总计      
(Ⅲ)由以上统计数据填写下面2×2列联表,并判断是否有97.5%的把握认为两个学校的数学成绩有差异.
附:K2=
nad-bc2
a+bc+da+cb+d

P(k2>k0 0.10 0.025 0.010
K 2.706 5.024 6.635

查看答案和解析>>


同步练习册答案