证明:右边 查看更多

 

题目列表(包括答案和解析)

 已知命题及其证明:

(1)当时,左边=1,右边=所以等式成立;

(2)假设时等式成立,即成立,

则当时,,所以时等式也成立。

由(1)(2)知,对任意的正整数n等式都成立。      

经判断以上评述

A.命题、推理都正确      B命题不正确、推理正确 

C.命题正确、推理不正确      D命题、推理都不正确

 

查看答案和解析>>

已知命题1+2+22+…+2n-1=2n-1及其证明:
(1)当n=1时,左边=1,右边=21-1=1,所以等式成立;
(2)假设n=k时等式成立,即1+2+22+…+2k-1=2k-1 成立,
则当n=k+1时,1+2+22+…+2k-1+2k==2k+1-1,所以n=k+1时等式也成立,
由(1)(2)知,对任意的正整数n等式都成立,
判断以上评述

[     ]

A.命题、推理都正确
B.命题正确、推理不正确
C.命题不正确、推理正确
D.命题、推理都不正确

查看答案和解析>>

己知在锐角ΔABC中,角所对的边分别为,且

(I )求角大小;

(II)当时,求的取值范围.

20.如图1,在平面内,的矩形,是正三角形,将沿折起,使如图2,的中点,设直线过点且垂直于矩形所在平面,点是直线上的一个动点,且与点位于平面的同侧。

(1)求证:平面

(2)设二面角的平面角为,若,求线段长的取值范围。

 


21.已知A,B是椭圆的左,右顶点,,过椭圆C的右焦点F的直线交椭圆于点M,N,交直线于点P,且直线PA,PF,PB的斜率成等差数列,R和Q是椭圆上的两动点,R和Q的横坐标之和为2,RQ的中垂线交X轴于T点

(1)求椭圆C的方程;

(2)求三角形MNT的面积的最大值

22. 已知函数

(Ⅰ)若上存在最大值与最小值,且其最大值与最小值的和为,试求的值。

(Ⅱ)若为奇函数:

(1)是否存在实数,使得为增函数,为减函数,若存在,求出的值,若不存在,请说明理由;

(2)如果当时,都有恒成立,试求的取值范围.

查看答案和解析>>

试判断下面的证明过程是否正确:

用数学归纳法证明:

证明:(1)当时,左边=1,右边=1

∴当时命题成立.

(2)假设当时命题成立,即

则当时,需证

由于左端等式是一个以1为首项,公差为3,项数为的等差数列的前项和,其和为

式成立,即时,命题成立.根据(1)(2)可知,对一切,命题成立.

查看答案和解析>>

试判断下面的证明过程是否正确:

用数学归纳法证明:

证明:(1)当时,左边=1,右边=1

∴当时命题成立.

(2)假设当时命题成立,即

则当时,需证

由于左端等式是一个以1为首项,公差为3,项数为的等差数列的前项和,其和为

式成立,即时,命题成立.根据(1)(2)可知,对一切,命题成立.

查看答案和解析>>


同步练习册答案