已知=4,x=a+3,y=b+3,求证为定值. 证明:因为x+y=a+3+b=()3, 所以(x+y=()2=+. 类似可得(x-y=()2=, 所以原式=2()=2×4=8. 拓展应用 跳一跳.够得着! 查看更多

 

题目列表(包括答案和解析)

已知=4,x=a+3,y=b+3,求证为定值.

查看答案和解析>>

已知定理:“若a,b为常数,g(x)满足g(a+x)+g(a-x)=2b,则函数y=g(x)的图象关于点(a,b)中心对称”.设函数f(x)=
x+1-a
a-x
,定义域为A.
(1)试证明y=f(x)的图象关于点(a,-1)成中心对称;
(2)当x∈[a-2,a-1]时,求证:f(x)∈[-
1
2
, 0]

(3)对于给定的x1∈A,设计构造过程:x2=f(x1),x3=f(x2),…,xn+1=f(xn).如果xi∈A(i=2,3,4…),构造过程将继续下去;如果xi∉A,构造过程将停止.若对任意x1∈A,构造过程都可以无限进行下去,求a的值.

查看答案和解析>>

已知以点C (t,
2
t
)(t∈R),t≠0)为圆心的圆与x轴交于点O,A,与y轴交于点O,B,其中O为坐标原点.
(1)求证:△OAB的面积为定值.
(2)设直线y=-2x+4与圆C交于点M,N若|OM|=|ON|,求圆C的方程.
(3)若t>0,当圆C的半径最小且时,圆C上至少有三个不同的点到直线l:y-
2
=k(x-3-
2
)
的距离为
1
2
,求直线l的斜率k的取值范围.

查看答案和解析>>

已知定义域为R的函数y=f(x)和y=g(x),它们分别满足条件:对任意a,b∈R,都有f(a+b)=f(a)+f(b);对任意a,b∈R,都有g(a+b)=g(a)•g(b),且对任意x>0,g(x)>1.
(1)求f(0)、g(0)的值;
(2)证明函数y=f(x)是奇函数;
(3)证明x<0时,0<g(x)<1,且函数y=g(x)在R上是增函数;
(4)试各举出一个符合函数y=f(x)和y=g(x)的实例.

查看答案和解析>>

已知椭圆M:
x2
a2
+
y2
b2
=1(a>0,b>0)
的面积为πab,M包含于平面区域Ω:
|x|≤2
|y|≤
3
内,向平面区域Ω内随机投一点Q,点Q落在椭圆内的概率为
π
4

(Ⅰ)试求椭圆M的方程;
(Ⅱ)若斜率为
1
2
的直线l与椭圆M交于C、D两点,点P(1,  
3
2
)
为椭圆M上一点,记直线PC的斜率为k1,直线PD的斜率为k2,试问:k1+k2是否为定值?请证明你的结论、

查看答案和解析>>


同步练习册答案