定义在R上的函数f=>0,又g,在[a,b]上是单调递增函数,判断并证明g(x)在[-b,-a]上的单调性. 解:任取x1.x2∈[-b,-a]且-b≤x1<x2≤-a, 则g(x1)-g(x2)=f(x1)-f(x2)=. ∵g+c在[a,b]上是增函数, ∴f(x)在[a,b]上也是增函数. 又b≥-x1>-x2≥a, ∴f(-x1)>f(-x2). 又f(-x1),f(-x2)皆大于0,∴g(x1)-g(x2)<0,即g(x1)<g(x2).故g(x)在[-b,-a]上是单调增函数. 能力提升 踮起脚,抓得住! 查看更多

 

题目列表(包括答案和解析)

定义在R上的函数f(x)既是偶函数又是周期函数,若f(x)的最小正周期是π,且当x∈[0,
π
2
]时,f(x)=sinx,则f(
3
)的值为
 

查看答案和解析>>

已知定义在R上的函数f(x)=Acos(ωx+φ)(A>0,ω>0,|φ|≤
π
2
),最大值与最小值的差为4,相邻两个最低点之间距离为π,函数y=sin(2x+
π
3
)图象所有对称中心都在f(x)图象的对称轴上.
(1)求f(x)的表达式;    
(2)若f(
x0
2
)=
3
2
(x0∈[-
π
2
π
2
]),求cos(x0-
π
3
)的值.

查看答案和解析>>

定义在R上的函数f(x)满足:f(x+2)=
1-f(x)1+f(x)
,当x∈(0,4)时,f(x)=x2-1,则f(2010)=
 

查看答案和解析>>

已知定义在R上的函数f(x)的图象是连续不断的,且有如下对应值表:
x 0 1 2 3
f(x) 3.1 0.1 -0.9 -3
那么函数f(x)一定存在零点的区间是(  )

查看答案和解析>>

20、已知定义在R上的函数f(x)=-2x3+bx2+cx(b,c∈R),函数F(x)=f(x)-3x2是奇函数,函数f(x)在x=-1处取极值.
(1)求f(x)的解析式;
(2)讨论f(x)在区间[-3,3]上的单调性.

查看答案和解析>>


同步练习册答案