题目列表(包括答案和解析)
(本小题满分18分)已知数列{an}、{bn}、{cn}的通项公式满足bn=an+1-an,cn=bn+1-bn(n∈N*?),若数列{bn}是一个非零常数列,则称数列{an}是一阶等差数列;若数列{cn}是一个非零常数列,则称数列{an}是二阶等差数列?(1)试写出满足条件a1=1,b1=1,cn=1(n∈N*?)的二阶等差数列{an}的前五项;(2)求满足条件(1)的二阶等差数列{an}的通项公式an;(3)若数列{an}首项a1=2,且满足cn-bn+1+3an=-2n+1(n∈N*?),求数列{an}的通项公式
(本题满分18分)本题共有3个小题,第1小题满分6分,第2小题满分7分,第3小题满分5分.
已知各项都为正数的数列
,其中
的前n项的和.
(1)
;
(2)已知p(
2)是给定的某个正整数,数列![]()
(
),求
;
(3)化简
.
(本题满分18分,第1小题4分,第2小题6分,第3小题8分)
已知数列{an}满足
,
(其中λ≠0且λ≠–1,n∈N*),
为数列{an}的前
项和.
(1) 若
,求
的值;
(2) 求数列{an}的通项公式
;
(3) 当
时,数列{an}中是否存在三项构成等差数列,若存在,请求出此三项;若不存在,请说明理由.
(本题满分18分,第1小题4分,第2小题6分,第3小题8分)
已知数列{an}满足
,
(其中λ≠0且λ≠–1,n∈N*),
为数列{an}的前
项和.
(1) 若
,求
的值;
(2) 求数列{an}的通项公式
;
(3) 当
时,数列{an}中是否存在三项构成等差数列,若存在,请求出此三项;若不存在,请说明理由.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com