题目列表(包括答案和解析)
已知直三棱柱
中,
,
,
是
和
的交点, 若
.
(1)求
的长; (2)求点
到平面
的距离;
(3)求二面角
的平面角的正弦值的大小.
![]()
【解析】本试题主要考查了距离和角的求解运用。第一问中,利用ACC
A
为正方形,
AC=3
第二问中,利用面BB
C
C内作CD
BC
,
则CD就是点C平面A
BC
的距离CD=
,第三问中,利用三垂线定理作二面角的平面角,然后利用直角三角形求解得到其正弦值为![]()
解法一: (1)连AC
交A
C于E, 易证ACC
A
为正方形,
AC=3
…………… 5分
(2)在面BB
C
C内作CD
BC
,
则CD就是点C平面A
BC
的距离CD=
… 8分
(3) 易得AC![]()
面A
CB,
过E作EH
A
B于H, 连HC
,
则HC![]()
A
B
![]()
C
HE为二面角C
-A
B-C的平面角. ……… 9分
sin
C
HE=![]()
二面角C
-A
B-C的平面角的正弦大小为
……… 12分
解法二: (1)分别以直线C
B、CC
、C
A为x、y为轴建立空间直角坐标系, 设|CA|=h, 则C
(0,
0, 0), B
(4,
0, 0), B(4, -3, 0), C(0, -3,
0), A
(0,
0, h), A(0, -3, h), G(2, -
, -
) ……………………… 3分
![]()
=(2, -
, -
),
=(0,
-3, -h) ……… 4分
![]()
·
=0,
h=3
(2)设平面A
BC
得法向量
=(a, b, c),则可求得
=(3, 4, 0) (令a=3)
点A到平面A
BC
的距离为H=|
|=
……… 8分
(3) 设平面A
BC的法向量为
=(x, y, z),则可求得
=(0, 1, 1) (令z=1)
二面角C
-A
B-C的大小
满足cos
=
=
………
11分
二面角C
-A
B-C的平面角的正弦大小为![]()
如图,A,B,C是三个汽车站,AC,BE是直线型公路.已知AB=120 km,∠BAC=75°,∠ABC=45°.有一辆车(称甲车)以每小时96(km)的速度往返于车站A,C之间,到达车站后停留10分钟;另有一辆车(称乙车)以每小时120(km)的速度从车站B开往另一个城市E,途经车站C,并在车站C也停留10分钟.已知早上8点时甲车从车站A、乙车从车站B同时开出.
![]()
(1)计算A,C两站距离,及B,C两站距离;
(2)若甲、乙两车上各有一名旅客需要交换到对方汽车上,问能否在车站C处利用停留时间交换.
(3)求10点时甲、乙两车的距离.(可能用到的参考数据:
≈1.4,
≈1.7,
≈2.4,
≈10.5)
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com