题目列表(包括答案和解析)
对于三次函数f(x)=ax3+bx2+cx+d(a≠0),定义:设f″(x)是函数y=f(x)的导数y=f′(x)的导数,若方程f″(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.有同学发现“任何一个三次函数都有‘拐点’;任何一个三次函数都有对称中心;且‘拐点’就是对称中心.如“函数f(x)=x3-3x2+3x对称中心为点 (1,1)”请你将这一发现![]()
对于三次函数f(x)=ax3+bx2+cx+d(a≠0),给出定义:设
(x)是函数y=f(x)的导数,
是
(x)的导数,若方程
(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.若
,请你根据这一发现,求:
(1)函数
对称中心为________;
(2)计算
=________.
对于三次函数f(x)=ax3+bx2+cx+d(a≠0),给出定义:
(x)是函数f(x)的导函数,
(x)是
(x)的导函数,若方程
(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.某同学经研究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且拐点就是对称中心.若
,请你根据这一发现,求:
(1)函数
的对称中心为________.
(2)
=________.
对于三次函数f(x)=ax3+bx2+cx+d(a≠0),定义:设
是函数y=f(x)的导数y=
的导数,若方程
=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.有同学发现“任何一个三次函数都有‘拐点’;任何一个三次函数都有对称中心;且‘拐点’就是对称中心.”请你将这一发现为条件,函数f(x)=x3-
x2+3x-
,则它的对称中心为________.
对于三次函数f(x)=ax3+bx2+cx+d(a≠0),定义:设
是函数y=f(x)的导数
的导数,若方程
=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.有同学发现“任何一个三次函数都有‘拐点’;任何一个三次函数都有对称中心;且‘拐点’就是对称中心.”请你将这一发现为条件,函数f(x)=x3-
x2+3x-
,则它的对称中心为________;
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com