第一题满分5分.第二题满分5分.第三题满分8分. 如图.有一公共边但不共面的两个三角形ABC和A1BC被一平面DEE1D1所截.若平面DEE1D1分别交AB,AC,A1B,A1C于点D,E,D1,E1. (1)讨论这三条交线ED,CB, E1 D1的关系. (2)当BC//平面DEE1D1时,求的值. (3)当BC不平行平面DEE1D1时, 的值变化吗?为什么? (1)互相平行或三线共点. 当BC//平面DEE1D1时. 平面ABC平面DEE1D1=ED BC// ED,同理CB// E1 D1 ∴ED//CB// E1 D1 当BC不平行平面DEE1D1时, 延长ED.CB交于点H. ∴H∈EF ∵EF平面DEE1D1 ∴H∈平面DEE1D1 同理H∈平面A1BC ∴H∈平面DEE1D1∩平面A1BC 即H∈E1D1 ∴E1.D1.H三点共线 ∴三线共点 (2)解:∵BC//平面DEE1D1 且BC平面ABC.平面ABC∩平面DEE1D1=ED ∴BC∥ED.同理BC∥E1D1 在△ABC中.BC∥ED ∴= 同理可得= ∴==1 (3)解: 由(1)可得.延长ED.CB.E1D1交于点H. 过点B作BF∥AC.BG∥A1C ∵BF∥AC ∴= 同理可得= 在△HCE中.BG∥CE1 ∴= 同理可得= ∴=====1 的值不变化.仍为1 查看更多

 

题目列表(包括答案和解析)

(本题满分18分) 本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.

,对于项数为的有穷数列,令中最大值,称数列的“创新数列”.例如数列3,5,4,7的创新数列为3,5,5,7.

考查自然数的所有排列,将每种排列都视为一个有穷数列

(1)若,写出创新数列为3,4,4,4的所有数列

(2)是否存在数列的创新数列为等比数列?若存在,求出符合条件的创新数列;若不存在,请说明理由.

(3)是否存在数列,使它的创新数列为等差数列?若存在,求出满足所有条件的数列的个数;若不存在,请说明理由.

 

查看答案和解析>>

(本题满分18分) 本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.
,对于项数为的有穷数列,令中最大值,称数列的“创新数列”.例如数列3,5,4,7的创新数列为3,5,5,7.
考查自然数的所有排列,将每种排列都视为一个有穷数列
(1)若,写出创新数列为3,4,4,4的所有数列
(2)是否存在数列的创新数列为等比数列?若存在,求出符合条件的创新数列;若不存在,请说明理由.
(3)是否存在数列,使它的创新数列为等差数列?若存在,求出满足所有条件的数列的个数;若不存在,请说明理由.

查看答案和解析>>

(本题满分18分;第(1)小题5分,第(2)小题5分,第(3)小题8分)

设数列是等差数列,且公差为,若数列中任意(不同)两项之和仍是该数列中的一项,则称该数列是“封闭数列”.

(1)若,求证:该数列是“封闭数列”;

(2)试判断数列是否是“封闭数列”,为什么?

(3)设是数列的前项和,若公差,试问:是否存在这样的“封闭数列”,使;若存在,求的通项公式,若不存在,说明理由.

查看答案和解析>>

(本题满分18分,其中第1小题5分,第2小题5分,第3小题8分)

在平面直角坐标系中,已知为坐标原点,点的坐标为,点的坐标为,其中.设.

(1)若,求方程在区间内的解集;

(2)若点是过点且法向量为的直线上的动点.当时,设函数的值域为集合,不等式的解集为集合. 若恒成立,求实数的最大值;

(3)根据本题条件我们可以知道,函数的性质取决于变量的值. 当时,试写出一个条件,使得函数满足“图像关于点对称,且在取得最小值”.(说明:请写出你的分析过程.本小题将根据你对问题探究的完整性和在研究过程中所体现的思维层次,给予不同的评分.)

查看答案和解析>>

(本题满分18分,其中第1小题5分,第2小题5分,第3小题8分)
在平面直角坐标系中,已知为坐标原点,点的坐标为,点的坐标为,其中.设.
(1)若,求方程在区间内的解集;
(2)若点是过点且法向量为的直线上的动点.当时,设函数的值域为集合,不等式的解集为集合. 若恒成立,求实数的最大值;
(3)根据本题条件我们可以知道,函数的性质取决于变量的值. 当时,试写出一个条件,使得函数满足“图像关于点对称,且在取得最小值”.(说明:请写出你的分析过程.本小题将根据你对问题探究的完整性和在研究过程中所体现的思维层次,给予不同的评分.)

查看答案和解析>>


同步练习册答案