题目列表(包括答案和解析)
.(本小题满分12分)已知椭圆的中心在原点,焦点在
轴上,一个顶点为
,且其右焦点到直线
的距离为3.
(1)求椭圆的方程;
(2)是否存在斜率为
,且过定点
的直线
,使
与椭圆交于两个不同的点
、
,且
?若存在,求出直线
的方程;若不存在,请说明理由.
.(本小题满分12分)
已知椭圆
的中心在坐标原点,焦点在
轴上,该椭圆经过点
,且离心率为
.
(1)求椭圆
的标准方程;
(2)若直线
与椭圆
相交
两点(
不是左右顶点),且以
为直径的圆过椭圆
的右顶点,求证:直线
过定点,并求出该定点的坐标.
(本小题满分12分)
已知椭圆
的离心率
,点
是椭圆的左焦点,
为椭圆的右顶点,
为椭圆的上顶点,且
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设点
关于直线
的对称点
在椭圆
上,求
的取值范围.
(本小题满分12分)已知椭圆
的焦点在
轴上,一个顶点的坐标是
,离心率等于
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)过椭圆
的右焦点
作直线
交椭圆
于
两点,交
轴于
点,若
,
,求证:
为定值.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com