过点A.且在X轴.Y轴上的截距相等的直线方程为 x+y+2=0或3x+5y=0 . 查看更多

 

题目列表(包括答案和解析)

求过点A(-5,2),且在x、y轴上截距相等的直线方程
2x+5y=0或x+y+3=0
2x+5y=0或x+y+3=0

查看答案和解析>>

已知函数的图象过坐标原点O,且在点(﹣1,f(﹣1))处的切线的斜率是﹣5.
(1)求实数b,c的值; 
(2)求f(x)在区间[﹣1,2]上的最大值;
(3)对任意给定的正实数a,曲线y=f(x)上是否存在两点P、Q,使得△POQ是以O为直角顶点的直角三角形,且此三角形斜边中点在y轴上?说明理由.

查看答案和解析>>

已知中心在原点O,焦点F1、F2在x轴上的椭圆E经过点C(2,2),且抛物线的焦点为F1.

(Ⅰ)求椭圆E的方程;

(Ⅱ)垂直于OC的直线l与椭圆E交于A、B两点,当以AB为直径的圆P与y轴相切时,求直线l的方程和圆P的方程.

【解析】本试题主要考查了椭圆的方程的求解以及直线与椭圆的位置关系的运用。第一问中,设出椭圆的方程,然后结合抛物线的焦点坐标得到,又因为,这样可知得到。第二问中设直线l的方程为y=-x+m与椭圆联立方程组可以得到

,再利用可以结合韦达定理求解得到m的值和圆p的方程。

解:(Ⅰ)设椭圆E的方程为

①………………………………1分

  ②………………2分

  ③       由①、②、③得a2=12,b2=6…………3分

所以椭圆E的方程为…………………………4分

(Ⅱ)依题意,直线OC斜率为1,由此设直线l的方程为y=-x+m,……………5分

 代入椭圆E方程,得…………………………6分

………………………7分

………………8分

………………………9分

……………………………10分

    当m=3时,直线l方程为y=-x+3,此时,x1 +x2=4,圆心为(2,1),半径为2,

圆P的方程为(x-2)2+(y-1)2=4;………………………………11分

同理,当m=-3时,直线l方程为y=-x-3,

圆P的方程为(x+2)2+(y+1)2=4

 

查看答案和解析>>

已知函数f(x)的图象过坐标原点O,且在点(1f(1))处的切线的斜率是-5

(1)求实数bc的值;

(2)f(x)在区间[12]上的最大值;

(3)对任意给定的正实数a,曲线yf(x)上是否存在两点PQ,使得△POQ是以O为直角顶点的直角三角形,且此三角形斜边中点在y轴上?说明理由.

查看答案和解析>>

求满足下列条件的直线方程:

(1)经过点P(2,-1)且与直线2x+3y+12=0平行;

(2)经过点Q(-1,3)且与直线x+2y-1=0垂直;

(3)经过点R(-2,3)且在两坐标轴上截距相等;

(4)经过点M(1,2)且与点A(2,3)、B(4,-5)距离相等;

(5)经过点N(-1,3)且在x轴的截距与它在y轴上的截距的和为零.

查看答案和解析>>


同步练习册答案