题目列表(包括答案和解析)
(本小题满分14分)
(1)在平面直角坐标系
中,点P到两点
,
的距离之和等于4,设点P的轨迹为
.求出
的方程及其离心率
的大小;
(2)已知椭圆的一个顶点为A(0,-1),焦点在x轴上.若右焦点到直线
的距离为3.求椭圆的方程
(本小题满分14分)
已知椭圆C的中心在坐标原点,焦点在x轴上,它的一个顶点恰好是抛物线![]()
(1) 求椭圆C的标准方程;
(2)过椭圆C的右焦点F作直线l交椭圆C于A、B两点,交y轴于M点,若
求
的值.
(本小题满分14分)
已知直线
经过椭圆S:
的一个焦点和一个顶点.
(1)求椭圆S的方程;
(2)如图,M,N分别是椭圆S的顶点,过坐标原点的直线交椭圆于P、A两点,其中P在第一象限,过P作
轴的垂线,垂足为C,连接AC,并延长交椭圆于点B,设直线PA的斜率为k.
①若直线PA平分线段MN,求k的值;
②对任意
,求证:
.
![]()
(本小题满分14分)
已知椭圆
的左,右两个顶点分别为
、
.曲线
是以
、
两点为顶点,离心率为
的双曲线.设点
在第一象限且在曲线
上,直线
与椭圆相交于另一点
.
(1)求曲线
的方程;
(2)设
、
两点的横坐标分别为
、
,证明:
;
(3)设
与
(其中
为坐标原点)的面积分别为
与
,且
,求
的取值范围.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com