已知双曲线的两个焦点是椭圆+=1的两个顶点.双曲线的两条准线分别通过椭圆的 两个焦点.则此双曲线的方程是( ). (A)-=1 (B)-=1 (C)-=1 (D)-=1 查看更多

 

题目列表(包括答案和解析)

已知双曲线的两个焦点是椭圆
x2
100
+
y2
64
=1
的两个顶点,双曲线的两条准线经过椭圆的两个焦点,则此双曲线的方程是(  )
A、
x2
60
-
y2
30
=1
B、
x2
50
-
y2
40
=1
C、
x2
60
-
y2
40
=1
D、
x2
50
-
y2
30
=1

查看答案和解析>>

已知双曲线C1的渐近线方程是y=±
3
3
x,且它的一条准线与渐近线y=
3
3
x及x轴围成的三角形的周长是
3
2
(1+
3
)
.以C1的两个顶点为焦点,以C1的焦点为顶点的椭圆记为C2
(1)求C2的方程;
(2)已知斜率为
1
2
的直线l经过定点P(m,0)(m>0)并与椭圆C2交于不同的两点A、B,若对于椭圆C2上任意一点M,都存在θ∈[0,2π],使得
OM
=cosθ•
OA
+sinθ•
OB
成立.求实数m的值.

查看答案和解析>>

已知双曲线C1的渐近线方程是y=±
3
3
x,且它的一条准线与渐近线y=
3
3
x及x轴围成的三角形的周长是
3
2
(1+
3
)
.以C1的两个顶点为焦点,以C1的焦点为顶点的椭圆记为C2
(1)求C2的方程;
(2)已知斜率为
1
2
的直线l经过定点P(m,0)(m>0)并与椭圆C2交于不同的两点A、B,若对于椭圆C2上任意一点M,都存在θ∈[0,2π],使得
OM
=cosθ•
OA
+sinθ•
OB
成立.求实数m的值.

查看答案和解析>>

已知双曲线C1的方程为x2-=1,椭圆C2长轴的两个端点恰好为双曲线C1的两个焦点.

(1)如果椭圆C2的两个焦点又是双曲线的两个顶点,求椭圆C2的方程;

(2)如果椭圆C2的方程为=1,且椭圆C2上存在两点A、B关于直线y=x-1对称,求b的取值范围.

查看答案和解析>>

1,3,5

 
已知双曲线的左、右焦点分别是F1F2.

(1)求双曲线上满足的点P的坐标;

(2)椭圆C2的左、右顶点分别是双曲线C1的左、右焦点,椭圆C2的左、右焦点分别是双曲线C1的左、右顶点,若直线与椭圆恒有两个不同的交点AB,且(其中O为坐标原点),求k的取值范围.

查看答案和解析>>


同步练习册答案