13. 求以A为两顶点的正三角形ABC顶点C的坐标. 查看更多

 

题目列表(包括答案和解析)

设双曲线(a>0,b>0)的右顶点为A,P是双曲线上异于顶点的一个动点,从A引双曲线的两条渐近线的平行线与直线OP分别交于QR两点.(如图)

(1)证明无论P点在什么位置,总有||2=|·|(O为坐标原点);

(2)若以OP为边长的正方形面积等于以双曲线实、虚轴长为边长的矩形的面积,求双曲线离心率的取值范围.

查看答案和解析>>

精英家教网设双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的右顶点为A,P是双曲线上异于顶点的一个动点,从A引双曲线的两条渐近线的平行线与直线OP分别交于Q和R两点.(如图)
(1)证明:无论P点在什么位置,总有|
OP
|2=|
OQ
OR
|(O为坐标原点)

(2)若以OP为边长的正方形面积等于双曲线实、虚轴围成的矩形面积,求双曲线离心率的取值范围.

查看答案和解析>>

设双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的右顶点为A,P是双曲线上异于顶点的一个动点,从A引双曲线的两条渐近线的平行线与直线OP分别交于Q和R两点.(如图)
(1)证明:无论P点在什么位置,总有|
OP
|2=|
OQ
OR
|(O为坐标原点)

(2)若以OP为边长的正方形面积等于双曲线实、虚轴围成的矩形面积,求双曲线离心率的取值范围.
精英家教网

查看答案和解析>>

已知两点A(-2,0)、B(2,0),动点P满足kPA  •  kPB=-
1
4

(1)求动点P的轨迹E的方程;
(2)H是曲线E与y轴正半轴的交点,曲线E上是否存在两点M、N,使得△HMN是以H为直角顶点的等腰直角三角形?若存在,请说明有几个;若不存在,请说明理由.

查看答案和解析>>

已知椭圆C:的焦点和上顶点分别为F1、F2、B,我们称△F1BF2为椭圆C的特征三角形.如果两个椭圆的特征三角形是相似三角形,则称这两个椭圆为“相似椭圆”,且特征三角形的相似比即为相似椭圆的相似比.已知椭圆C1以抛物线的焦点为一个焦点,且椭圆上任意一点到两焦点的距离之和为4.(1)若椭圆C2与椭圆C1相似,且相似比为2,求椭圆C2的方程.
(2)已知点P(m,n)(mn≠0)是椭圆C1上的任一点,若点Q是直线y=nx与抛物线异于原点的交点,证明点Q一定落在双曲线4x2-4y2=1上.
(3)已知直线l:y=x+1,与椭圆C1相似且短半轴长为b的椭圆为Cb,是否存在正方形ABCD,使得A,C在直线l上,B,D在曲线Cb上,若存在求出函数f(b)=SABCD的解析式及定义域,若不存在,请说明理由.

查看答案和解析>>


同步练习册答案