当a>1时.同一直角坐标系中.函数y=a-x.y=logax的图象是 A. y B. y C. y D. y 1 1 1 1 O 1 x O 1 x O 1 x O 1 x 查看更多

 

题目列表(包括答案和解析)

一自来水厂用蓄水池通过管道向所管辖区域供水.某日凌晨,已知蓄水池有水9千吨,水厂计划在当日每小时向蓄水池注入水2千吨,且每小时通过管道向所管辖区域供水千吨.

(1)多少小时后,蓄水池存水量最少?

(2)当蓄水池存水量少于3千吨时,供水就会出现紧张现象,那么当日出现这种情况的时间有多长?

【解析】第一问中(1)设小时后,蓄水池有水千吨.依题意,,即(小时)时,蓄水池的水量最少,只有1千吨

第二问依题意,   解得:

解:(1)设小时后,蓄水池有水千吨.………………………………………1分

依题意,…………………………………………4分

,即(小时)时,蓄水池的水量最少,只有1千吨. ………2分

(2)依题意,   ………………………………………………3分

解得:.  …………………………………………………………………3分

所以,当天有8小时会出现供水紧张的情况

 

查看答案和解析>>

解答题:解答应写出文字说明,证明过程或演算步骤.

有四个正数a,b,c,d,前三数成等比数列,其和为;后三数成等差数列,其和为

(1)

(4分)求此四数

(2)

(4分)分别求以a,b,c为前三项的等比数列的前n项和Tn与以b,c,d为前三项的等差数列的前n项和Sn

(3)

(4分)比较Tn的大小.

 

查看答案和解析>>

如图,已知∠A=60°,P、Q分别是∠A两边上的动点.
(1)当AP=1,AQ=3时,求PQ的长;
(2)已知AP+AQ=4,当线段AP为何值时,线段PQ取得最小值,并求线段PQ的最小值.

查看答案和解析>>

(2006•静安区二模)某种洗衣机在洗涤衣服时,需经过进水、清洗、排水、脱水四个连续的过程.假设进水时水量匀速增加,清洗时水量保持不变.已知进水时间为4分钟,清洗时间为12分钟,排水时间为2分钟,脱水时间为2分钟.洗衣机中的水量y(升)与时间x(分钟)之间的关系如下表所示:
x 0 2 4 16 16.5 17 18
y 0 20 40 40 29.5 20 2
请根据表中提供的信息解答下列问题:
(1)试写出当x∈[0,16]时y关于x的函数解析式,并画出该函数的图象;
(2)根据排水阶段的2分钟点(x,y)的分布情况,可选用y=
a
x
+b
或y=c(x-20)2+d(其中a、b、c、d为常数),作为在排水阶段的2分钟内水量y与时间x之间关系的模拟函数.试分别求出这两个函数的解析式;
(3)请问(2)中求出的两个函数哪一个更接近实际情况?(写出必要的步骤)

查看答案和解析>>

(理) 某次国际象棋友谊赛在中国队和乌克兰队之间举行,比赛采用积分制,比赛规则规定赢一局得2分,平一局得1分,输一局得0分,根据以往战况,每局中国队赢的概率为
1
2
,乌克兰队赢的概率为
1
3
,且每局比赛输赢互不影响.若中国队第n局的得分记为an,令Sn=a1+a2+…+an
(1)求S3=4的概率;
(2)若规定:当其中一方的积分达到或超过4分时,比赛不再继续,否则,继续进行.设随机变量ξ表示此次比赛共进行的局数,求ξ的分布列及数学期望.
(文) 某次国际象棋友谊赛在中国队和乌克兰队之间举行,比赛采用积分制,比赛规则规定赢一局得2分,平一局得1分,输一局得0分,根据以往战况,每局中国队赢的概率为
1
2
,乌克兰队赢的概率为
1
3
,且每局比赛输赢互不影响.若中国队第n局的得分记为an,令Sn=a1+a2+…+an
(1)求S3=4的概率;
(2)若规定:当其中一方的积分达到或超过4分时,比赛不再继续,否则,继续进行.求比赛进行三局就结束比赛的概率.

查看答案和解析>>


同步练习册答案