=lg.其中a∈R.且0<a≤1 ①求证:当x≠0时.有2f当x∈(-∞.1]时有意义.求a的取值范围 查看更多

 

题目列表(包括答案和解析)

(2012•潍坊二模)如图,已知F(2,0)为椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的右焦点,AB为椭圆的通径(过焦点且垂直于长轴的弦),线段OF的垂直平分线与椭圆相交于两点C、D,且∠CAD=90°.
(I)求椭圆的方程;
(II)设过点F斜率为k(k≠0)的直线l与椭圆相交于两点P、Q.若存在一定点E(m,0),使得x轴上的任意一点(异于点E、F)到直线EP、EQ的距离相等,求m的值.

查看答案和解析>>

(2012•广东模拟)已知f(x)为定义在(-∞,+∞)上的可导函数,且f(x)<f′(x)对于x∈R恒成立,且e为自然对数的底,则(  )

查看答案和解析>>

(2011•广东三模)为预防H1N1病毒爆发,某生物技术公司研制出一种新流感疫苗,为测试该疫苗的有效性(若疫苗有效的概率小于90%,则认为测试没有通过),公司选定2000个流感样本分成三组,测试结果如下表:
A组 B组 C组
疫苗有效 673 x y
疫苗无效 77 90 z
 已知在全体样本中随机抽取1个,抽到B组疫苗有效的概率是0.33.
(Ⅰ)求x的值;
(Ⅱ)现用分层抽样的方法在全体样本中抽取360个测试结果,问应在C组抽取多少个?
(Ⅲ)已知y≥465,z≥30,求不能通过测试的概率.

查看答案和解析>>

有下列命题:
①a>b是a2>b2的充分不必要条件;
OP
OQ
=
1
2
(
OP
2
+
OQ
2
-
PQ
2
)

③已知f(x)的最大值为M,最小值是m,其值域是[m,M];
④有3种不同型号的产品A、B、C,其数量之比依次为2:3:4,现用分层抽样方法抽出一个容量为n的样本,样本中A型号产品有10件,则n=90.
其中错误命题的序号为
 
(要求填写所有错误命题的序号).

查看答案和解析>>

本题共有(1)、(2)、(3)三个选答题,每题7分,请考生任选2题作答,满分14分.如果多做,则以所做的前2题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.
(1)选修4-2:矩阵与变换
变换T1是逆时针旋转90°的旋转变换,对应的变换矩阵为M1,变换T2对应的变换矩阵是M2=
11
01

(I)求点P(2,1)在T1作用下的点Q的坐标;
(II)求函数y=x2的图象依次在T1,T2变换的作用下所得的曲线方程.
(2)选修4-4:极坐标系与参数方程
从极点O作一直线与直线l:ρcosθ=4相交于M,在OM上取一点P,使得OM•OP=12.
(Ⅰ)求动点P的极坐标方程;
(Ⅱ)设R为l上的任意一点,试求RP的最小值.
(3)选修4-5:不等式选讲
已知f(x)=|6x+a|.
(Ⅰ)若不等式f(x)≥4的解集为{x|x≥
1
2
或x≤-
5
6
}
,求实数a的值;
(Ⅱ)在(Ⅰ)的条件下,若f(x)+f(x-1)>b对一切实数x恒成立,求实数b的取值范围.

查看答案和解析>>


同步练习册答案