过一点作n个不同的平面,这些平面最多有k条交线,最少有l条交线,则k.l分别为 .翰林汇 查看更多

 

题目列表(包括答案和解析)

如图,在空间四边形ABCD中,M,N分别是线段AB,AD上的点,若
AM
MB
=
AN
ND
,P为线段CD上的一点(P与D不重合),过M,N,P的平面交平面BCD于Q,求证:BD∥PQ.

查看答案和解析>>

集合A1,A2,A3,…,An为集合M={1,2,3,…,n}的n个不同的子集,对于任意不大于n的正整数i,j满足下列条件:
①i∉Ai,且每一个Ai至少含有三个元素;
②i∈Aj的充要条件是j∉Aj(其中i≠j).
为了表示这些子集,作n行n列的数表(即n×n数表),规定第i行第j列数为:aij=
0   当i∉AJ
1        当i∈AJ时  

(1)该表中每一列至少有多少个1;若集合M={1,2,3,4,5,6,7},请完成下面7×7数表(填符合题意的一种即可);
(2)用含n的代数式表示n×n数表中1的个数f(n),并证明n≥7;
(3)设数列{an}前n项和为f(n),数列{cn}的通项公式为:cn=5an+1,证明不等式:
5cmn
-
cmcn
>1对任何正整数m,n都成立.(第1小题用表)
1 2 3 4 5 6 7
1 0
2 0
3 0
4 0
5 0
6 0
7 0

查看答案和解析>>

下列命题正确的是(  )

查看答案和解析>>

已知实数x,y满足
x-y+2≥0
x+y-2≤0
y≥0
,每一对整数(x,y)对应平面上一个点,则过这些点中的其中三点可作多少个不同的圆(  )

查看答案和解析>>

已知A1(x1,y1),A2(x2,y2),…,An(xn,yn)是直线l:y=kx+b上的n个不同的点(n∈N*,k、b均为非零常数),其中数列{xn}为等差数列.
(1)求证:数列{yn}是等差数列;
(2)若点P是直线l上一点,且
OP
=a1
OA1
+a2
OA2
,求证:a1+a2=1;
(3)设a1+a2+…+an=1,且当i+j=n+1时,恒有ai=aj(i和j都是不大于n的正整数,且i≠j).试探索:在直线l上是否存在这样的点P,使得
OP
=a1
OA1
+a2
OA2
+…+an
OAn
成立?请说明你的理由.

查看答案和解析>>


同步练习册答案