已知全集I=N.集合A={x|x=2n.n∈N}.B={x|x=4n.n∈N}.则 A.I=A∪B B.I=∪B C.I=A∪ D.I= 查看更多

 

题目列表(包括答案和解析)

(本小题满分1 4分)已知m,t∈R,函数f (x) =(x - t)3+m.

(I)当t =1时,

(i)若f (1) =1,求函数f (x)的单调区间;

(ii)若关于x的不等式f (x)≥x3—1在区间[1,2]上有解,求m的取值范围;

(Ⅱ)已知曲线y= f (x)在其图象上的两点A(x1,f (x1)),B(x2,f (x2)))( x1≠x2)处的切线

分别为l1、l2.若直线l1与l2平行,试探究点A与点B的关系,并证明你的结论.

 

查看答案和解析>>

如图1-4-7,已知D、E分别是△ABC的AB、AC边上一点,DE∥BC且S△ADE:S四边形DBCE=1∶3,那么AD∶AB等于(    )

1-4-7

A.           B.            C.                D.

查看答案和解析>>

已知椭圆的长轴长为,焦点是,点到直线的距离为,过点且倾斜角为锐角的直线与椭圆交于A、B两点,使得.

(1)求椭圆的标准方程;           (2)求直线l的方程.

【解析】(1)中利用点F1到直线x=-的距离为可知-.得到a2=4而c=,∴b2=a2-c2=1.

得到椭圆的方程。(2)中,利用,设出点A(x1,y1)、B(x2,y2).,借助于向量公式再利用 A、B在椭圆+y2=1上, 得到坐标的值,然后求解得到直线方程。

解:(1)∵F1到直线x=-的距离为,∴-.

∴a2=4而c=,∴b2=a2-c2=1.

∵椭圆的焦点在x轴上,∴所求椭圆的方程为+y2=1.……4分

(2)设A(x1,y1)、B(x2,y2).由第(1)问知

,

……6分

∵A、B在椭圆+y2=1上,

……10分

∴l的斜率为.

∴l的方程为y=(x-),即x-y-=0.

 

查看答案和解析>>

某班50名学生某次测试中的数学、英语成绩采用5分制统计如下表,如:数学5分英语5分的学生1人,若在全班学生中任选一人,且英语成绩记为x,数学成绩记为y.
(1)求x=1的概率;
(2)求x≥3且y=3的概率.
y
x
数学
5分 4分 3分 2分 1分
英语 5分 1 3 1 0 1
4分 1 0 7 5 1
3分 2 1 0 9 3
2分 1 2 6 0 1
1分 0 0 1 1 3

查看答案和解析>>

如图1-4-12,已知△ABC的面积为 60 cm2,D为BC上一点,且BD∶DC=1∶3,E、F是AC和AB上的点,四边形EFDC的面积等于△BCE的面积,求△ABE的面积.

1-4-12

查看答案和解析>>


同步练习册答案