17.已知点分别在直线和直线上.求中点到原点的距离的最小值. 查看更多

 

题目列表(包括答案和解析)

已知分别是直线上的两个动点,线段的长为的中点.

(1) 求动点的轨迹的方程;

(2) 过点作与轴不垂直的直线,交曲线两点,若在线段上存在点,使得以为邻边的平行四边形是菱形,试求的取值范围.

查看答案和解析>>

已知点Bn(n,yn),…(n∈N+)是某直线l上的点,以Bn为圆心作圆.所作的圆与x轴交于An和An+1两点,记An、An+1的横坐标分别为xn、xn+1.其中x1=a(0<a≤1)
(1)证明:xn+2-xn是常数,并求数列{xn}的通项公式;
(2)若l的方程为y=
1
4
x+
1
12
,试问在△AnBnAn+1(n∈N+)
中是否存在直角三角形,若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

已知点F1,F2为双曲线C:x2-
y2
b2
=1(b>0)的左、右焦点,过F2作垂直于x轴的直线,在x轴上方交双曲线于点M,且∠MF1F2=30°,圆O的方程为x2+y2=b2
(1)求双曲线C的方程;
(2)过圆O上任意一点Q(x0,y0)作切线l交双曲线C于A,B两个不同点,AB中点为M,求证:|AB|=2|OM|;
(3)过双曲线C上一点P作两条渐近线的垂线,垂足分别是P1和P2,求
PP1
PP2
的值.

查看答案和解析>>

已知点E、F、G分别是正方体ABCD-A1B1C1D1的棱AA1、BC、AB的中点,
(1)求直线EF和平面ABCD所成角的正切值;
(2)求证:DG⊥EF;
(3)在棱B1C1上求一点M,使得DG⊥平面EFM。

查看答案和解析>>

已知点Bn(n,yn),…(n∈N+)是某直线l上的点,以Bn为圆心作圆.所作的圆与x轴交于An和An+1两点,记An、An+1的横坐标分别为xn、xn+1.其中x1=a(0<a≤1)
(1)证明:xn+2-xn是常数,并求数列{xn}的通项公式;
(2)若l的方程为中是否存在直角三角形,若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>


同步练习册答案