(理)已知椭圆直线.在椭圆上求一点p.使得P到直线的距离最小. (文)求直线被椭圆截得弦长; 查看更多

 

题目列表(包括答案和解析)

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
2
2
,其左、右焦点分别为F1、F2,点P是椭圆上一点,且
PF1
PF2
=0
,|OP|=1(O为坐标原点).
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点S(0,-
1
3
)
且斜率为k的动直线l交
椭圆于A、B两点,在y轴上是否存在定点M,使以AB为直径的圆恒过这个点?若存在,求出M的坐标,若不存在,说明理由.

查看答案和解析>>

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
3
3
,过右焦点F的直线l与C相交于A、B两点,当l的斜率为1时,坐标原点O到l的距离为
2
2

(Ⅰ)求a,b的值;
(Ⅱ)C上是否存在点P,使得当l绕F转到某一位置时,有
OP
=
OA
+
OB
成立?若存在,求出所有的P的坐标与l的方程;若不存在,说明理由.

查看答案和解析>>

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)上的点到右焦点F的最小距离是
2
-1,F到上顶点的距离为
2
,点C(m,0)是线段OF上的一个动点.
(1)求椭圆的方程;
(2)是否存在过点F且与x轴不垂直的直线l与椭圆交于A、B两点,使得(
CA
+
CB
)⊥
BA
,并说明理由.

查看答案和解析>>

已知椭圆C的离心率e=
3
2
,长轴的左右端点分别为A1(-2,0),A2(2,0).
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线x=my+1与椭圆C交于P,Q两点,直线A1P与A2Q交于点S,试问:当m变化时,点S是否恒在一条定直线上?若是,请写出这条直线方程,并证明你的结论;若不是,请说明理由.

查看答案和解析>>

已知椭圆
x2
4
+
y2
9
=1
上任一点P,由点P向x轴作垂线段PQ,垂足为Q,点M在PQ上,且
PM
=2
MQ
,点M的轨迹为C.
(1)求曲线C的方程;
(2)过点D(0,-2)作直线l与曲线C交于A、B两点,设N是过点(0,-
4
17
)
且平行于x轴的直线上一动点,满足
ON
=
OA
+
OB
(O为原点),问是否存在这样的直线l,使得四边形OANB为矩形?若存在,求出直线的方程;若不存在说明理由.

查看答案和解析>>


同步练习册答案