11.椭圆:的离心率e= .准线方程: . 查看更多

 

题目列表(包括答案和解析)

椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
长轴为8离心率e=
3
2

(1)求椭圆C的标准方程;
(2)过椭圆C内一点M(2,1)引一条弦,使弦被点M平分,求这条弦所在的直线方程.

查看答案和解析>>

椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)离心率为
3
2
,且过P(
6
2
2
).
(1)求椭圆E的方程;
(2)已知直线l过点M(-
1
2
,0),且与开口朝上,顶点在原点的抛物线C切于第二象限的一点N,直  线l与椭圆E交于A,B两点,与y轴交与D点,若
AB
=λ
AN
BD
BN
,且λ+μ=
5
2
,求抛物线C的标准方程.

查看答案和解析>>

精英家教网已知椭圆C:
x2
a2
+
y2
b2
=1
的离心率e=
2
2
,且右焦点F到左准线的距离为3.
(1)求椭圆C的方程;
(2)又已知点A为抛物线y2=2px(p>0)上一点,直线FA与椭圆C的交点B在y轴的左侧,且满足
AB
=2
FA
,求p的最大值.

查看答案和解析>>

已知椭圆C:
x2
a2
+
y2
b2
=1 (a>b>0)
的离心率为e=
3
3
,以原点为圆心,椭圆短半轴长为半径的圆与直线x-y+2=0相切,A,B分别是椭圆的左右两个顶点,P为椭圆C上的动点.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若P与A,B均不重合,设直线PA与PB的斜率分别为k1,k2,证明:k1•k2为定值;
(Ⅲ)M为过P且垂直于x轴的直线上的点,若
|OP|
|OM|
,求点M的轨迹方程,并说明轨迹是什么曲线.

查看答案和解析>>

精英家教网已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的长轴长为2
2
,离心率e=
2
2

(1)求椭圆C的标准方程;
(2)若过点B(2,0)的直线l(斜率不等于零)与椭圆C交于不同的两点E、F(E在B、F之间),且△OBE与△OBF的面积之比为
1
2
,求直线l的方程.

查看答案和解析>>


同步练习册答案