连结A两点的直线与直线x+y-3=0交于E点.则点B分的比是( ) A.- B. C.- D.- 查看更多

 

题目列表(包括答案和解析)

一个盒子中装有5个编号依次为1、2、3、4、5的球,这5个球除号码外完全相同,有放回的连续抽取两次,每次任意地取出一个球。

(1)       用列表或画树状图的方法列出所有可能结果。(4分)

(2)       求事件A=“取出球的号码之和不小于6”的概率。(5分)

(3)设第一次取出的球号码为x,第二次取出的球号码为y,求事件B=“点(x,y)落在直线 y = x+1 上方”的概率。   (5分)

查看答案和解析>>

一个盒子中装有5个编号依次为1、2、3、4、5的球,这5个球除号码外完全相同,有放回的连续抽取两次,每次任意地取出一个球.

(1)用列表或画树状图的方法列出所有可能结果.

(2)求事件A=“取出球的号码之和不小于6”的概率.

(3)设第一次取出的球号码为x,第二次取出的球号码为y,求事件B=“点(x,y)落在直线y=x+1上方”的概率.

查看答案和解析>>

(理)如图a所示,某地为了开发旅游资源,欲修建一条连接风景点P和居民区O的公路,点P所在的山坡面与山脚所在水平面α所成的二面角为θ(0°<θ<90°),且sinθ=,点P到平面α的距离PH=0.4(km).沿山脚原有一段笔直的公路AB可供利用.从点O到山脚修路的造价为a万元/km,原有公路改建费用为万元/km.当山坡上公路长度为l km(1≤l≤2)时,其造价为(l2+1)a万元已知OA⊥AB,PB⊥AB,AB=1.5(km),OA=(km).

(1)在AB上求一点D,使沿折线PDAO修建公路的总造价最小;

(2)对于(1)中得到的点D,在DA上求一点E,使沿折线PDEO修建公路的总造价最小;

(3)在AB上是否存在两个不同的点D′,E′,使沿折线.PD′E′O修建公路的总造价小于(2)中得到的最小总造价?证明你的结论.

a)

第19题图

(文)如图b所示,直四棱柱ABCD-A1B1C1D1中,∠ADC=90°,△ABC为等边三角形,且AA1=AD=DC=2.

(1)求AC1与BC所成角的余弦值;

(2)求二面角C1-BD-C的大小;

(3)设M是BD上的点,当DM为何值时,D1M⊥平面A1C1D?并证明你的结论.

第19题图

查看答案和解析>>

下列结论正确的个数有

[  ]

(1)圆的切线长就是切线的长度;(2)过任意一点总可以作圆的两条切线;(3)从圆外一点引圆的两条切线,它们的切线长相等;(4)圆外一点和圆心的连线平分从这点引出的圆的两条切线的夹角;(5)若圆的两条切线互相平行,则连结两个切点的线段是圆的直径.

A2

B3

C4

D5

查看答案和解析>>

一个盒子中装有5个编号依次为1、2、3、4、5的球,这5个球除号码外完全相同,有放回的连续抽取两次,每次任意地取出一个球.
(1)列举出所有可能结果.
(2)求事件A=“取出球的号码之和不小于6”的概率.
(3)设第一次取出的球号码为x,第二次取出的球号码为y,求事件B=“点(x,y)落在直线 y=x+1 上方”的概率.

查看答案和解析>>


同步练习册答案