曲线f(x,y)=0关于直线x-y-2=0时称曲线的方程为( ) A.f=0 B.f=0 C.f=0 D.f=0 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)=
1
2
x2-(a+1)x+alnx

(I)若曲线f(x)在点(2,f(2))处的切线与直线2x+3y+1=0垂直,求a的值;
(II)讨论函数y=f(x)的单调性;
(III)当a=2时,关于x的方程f(x)=m有三个不同的实数根,求实数m的取值范围.

查看答案和解析>>

已知如图,直线(p>0),点F,P为平面上的动点,过P作直线l的垂线,垂足为点Q,且
(1)求动点P的轨迹C的方程;
(2)当p=2时,曲线C上存在不同的两点关于直线y=kx+3对称,求实数k满足的条件(写出关系式即可);
(3)设动点M (a,0),过M且斜率为1的直线与轨迹C交于不同的两点A,B,线段AB的中垂线与x轴交于点N,当|AB|≤2p时,求△NAB面积的最大值.

查看答案和解析>>

(理)已知函数f(x)=xlnx.

(1)求函数f(x)的单调区间和最小值;

(2)当b>0时,求证:bb(其中e=2.718 28…是自然对数的底数);

(3)若a>0,b>0,证明f(a)+(a+b)ln2≥f(a+b)-f(b).

(文)已知向量m=(x2,y-cx),n=(1,x+b)(x,y,b,c∈R)且mn,把其中x,y所满足的关系式记为y=f(x).若f′(x)为f(x)的导函数,F(x)=f(x)+af′(x)(a>0),且F(x)是R上的奇函数.

(1)求和c的值.

(2)求函数f(x)的单调递减区间(用字母a表示).

(3)当a=2时,设0<t<4且t≠2,曲线y=f(x)在点A(t,f(t))处的切线与曲线y=f(x)相交于点B(m,f(m))(A与B不重合),直线x=t与y=f(m)相交于点C,△ABC的面积为S,试用t表示△ABC的面积S(t),并求S(t)的最大值.

查看答案和解析>>

(2012•威海一模)已知函数f(x)=
12
x2-(a+1)x+alnx

(I)若曲线f(x)在点(2,f(2))处的切线与直线2x+3y+1=0垂直,求a的值;
(II)讨论函数y=f(x)的单调性;
(III)当a=2时,关于x的方程f(x)=m有三个不同的实数根,求实数m的取值范围.

查看答案和解析>>

设函数f(x)=Asin(ωx+φ)(A>0,ω>0,|ω|≤π)的图象的最高点D的坐标为(2,),由最高点运动到最低相邻最低点F时,曲线与x轴相交于点E(6,0),

(1)求A、ω、的值,

(2)求函数y=g(x),使其图象与y=f(x)图象关于直线x=8对称.

查看答案和解析>>


同步练习册答案