已知椭圆.其长轴长是短轴长的2倍.右准线方程为.求该椭圆方程. 查看更多

 

题目列表(包括答案和解析)

(本题满分18分)第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分8分。

圆锥曲线上任意两点连成的线段称为弦。若圆锥曲线上的一条弦垂直于其对称轴,我们将该弦称之为曲线的垂轴弦。已知椭圆C:

(1)过椭圆C的右焦点作一条垂直于轴的垂轴弦,求的长度;

(2)若点是椭圆C上不与顶点重合的任意一点,是椭圆C的短轴,直线分别交轴于点和点(如右图),求的值;

(3)在(2)的基础上,把上述椭圆C一般化为是任意一条垂直于轴的垂轴弦,其它条件不变,试探究是否为定值?(不需要证明);请你给出双曲线中相类似的结论,并证明你的结论。

查看答案和解析>>

 (本题16分,其中第(1)小题8分,第(2)小题8分)

已知椭圆的方程为,长轴是短轴的2倍,且椭圆过点;斜率为的直线过点为直线的一个法向量,坐标平面上的点满足条件

(1)写出椭圆方程,并求点到直线的距离;

(2)若椭圆上恰好存在3个这样的点,求的值.

 

 

 

 

 

 

 

查看答案和解析>>

(本小题满分12分,(1)小问4分,(2)小问8分)已知为椭圆上两动点,分别为其左右焦点,直线过点,且不垂直于轴,的周长为,且椭圆的短轴长为
(1)求椭圆的标准方程;
(2)已知点为椭圆的左端点,连接并延长交直线于点.求证:直线过定点.

查看答案和解析>>

(本小题满分12分,(1)小问4分,(2)小问8分)已知为椭圆上两动点,分别为其左右焦点,直线过点,且不垂直于轴,的周长为,且椭圆的短轴长为
(1)求椭圆的标准方程;
(2)已知点为椭圆的左端点,连接并延长交直线于点.求证:直线过定点.

查看答案和解析>>

(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.

给定椭圆  ,称圆心在坐标原点,半径为的圆是椭圆的“伴随圆”.

(1)若椭圆过点,且焦距为,求“伴随圆”的方程;

(2)如果直线与椭圆的“伴随圆”有且只有一个交点,那么请你画出动点 轨迹的大致图形;

(3)已知椭圆的两个焦点分别是

椭圆上一动点满足.设点是椭圆的“伴随圆”上的动点,过点作直线使得与椭圆都各只有一个交点,且分别交其“伴随圆”于点

 当为“伴随圆”与轴正半轴的交点时,求的方程,并求线段的长度.

查看答案和解析>>


同步练习册答案