如果..成等比数列.那么函数的图象与轴交点的个数是( ) A.0个 B.恰有一个 C.两个 D.不能确定 查看更多

 

题目列表(包括答案和解析)

给出下列命题:
①若数列{an}的前n项和Sn=2n+1,则数列{an}为等比数列;
②在△ABC中,如果A=60°,a=
6
,b=4
,那么满足条件的△ABC有两解;
③设函数f(x)=x|x-a|+b,则函数f(x)为奇函数的充要条件是a2+b2=0;
④设直线系M:xcosθ+(y-2)sinθ=1(0≤θ≤2π),则M中的直线所能围成的正三角形面积都相等.
其中真命题的序号是

查看答案和解析>>

给出下列命题:
①若数列{an}的前n项和,则数列{an}为等比数列;
②在△ABC中,如果,那么满足条件的△ABC有两解;
③设函数f(x)=x|x-a|+b,则函数f(x)为奇函数的充要条件是a2+b2=0;
④设直线系M:xcosθ+(y-2)sinθ=1(0≤θ≤2π),则M中的直线所能围成的正三角形面积都相等.
其中真命题的序号是   

查看答案和解析>>

给出下列命题:
①若数列{an}的前n项和数学公式,则数列{an}为等比数列;
②在△ABC中,如果数学公式,那么满足条件的△ABC有两解;
③设函数f(x)=x|x-a|+b,则函数f(x)为奇函数的充要条件是a2+b2=0;
④设直线系M:xcosθ+(y-2)sinθ=1(0≤θ≤2π),则M中的直线所能围成的正三角形面积都相等.
其中真命题的序号是________.

查看答案和解析>>

如果以数列的任意连续三项作边长,都能构成一个三角形,那么称这样的数列为“三角形”数列;又对于“三角形”数列,如果函数y=f(x)使得由=f()()确定的数列仍成为一个“三角形”数列,就称y=f(x) 是数列的“保三角形”函数。

(Ⅰ)、已知数列是首项为2012,公比为的等比数列,求证:是“三角形”数列;

(Ⅱ)、已知数列是首项为2,公差为1的等差数列,若函数f(x)=  (m>0且m≠1)是的“保三角形”函数. 求m的取值范围.

 

查看答案和解析>>

如果以数列的任意连续三项作边长,都能构成一个三角形,那么称这样的数列为“三角形”数列;又对于“三角形”数列,如果函数y=f(x)使得由=f()()确定的数列仍成为一个“三角形”数列,就称y="f(x)" 是数列的“保三角形”函数。
(Ⅰ)、已知数列是首项为2012,公比为的等比数列,求证:是“三角形”数列;
(Ⅱ)、已知数列是首项为2,公差为1的等差数列,若函数f(x)= (m>0且m≠1)是的“保三角形”函数. 求m的取值范围.

查看答案和解析>>


同步练习册答案